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Abstract. Convexity spaces defined in the paper are generated by families of continuous functions.
Without imposing any explicitly stated linear structure on the spaces, Browder’s, Brouwer’s and
Kakutani’s fixed point theorems are proved and used for deriving generalized Fan inequalities and
two-function minimax theorems. The existence of Nash equilibria in noncooperative games is also
established under more general conditions than known before. The convexity spaces studied in the
paper allow for unusual (generalized) convex sets and functions.
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1. Introduction

Generalizations of the usual convexityRfA have taken numerous directions during

the past fifty years. For an inspirational source and overview we refer to Danzer
et al. (1993), Guddler (1997), Soltan (1984) and Van de Vel (1993). Beginning
with such classics as von Neumann and Morgenstern’s (1944) utility theory and
Stone’s (1949) axiomatization of convex structures an interesting avenue of re-
search has been the extension of important features of convexity to spaces without
an explicitly stated linear structure. An important milestone along the way was the
ground breaking work of Fan (1952, 1953) who introduced, what was later termed,
convex (concave)-like functions. The minimax theorem he proved for convex—
concave-like functions launched an avalanche of one- and two-function minimax
theorems. For an excellent review see Simons (1995). Danzer et al. (1963) have
captured the very essence of generalized convexity when they say: ‘The usual
procedure in defining a generalized convexity is to select a property of convex
sets inR" or E"” which is either characteristic of convexity or essential in the proof

of some important theorem about convex sets, and to formulate that property or a
suitable variant in other settings.” When it comes to applications in game theory
and economics, the real test of the power of any sort of convexity is whether the
basic fixed point theorems (Brouwer’s, Browder’s, Kakutani’'s) can be carried over
under reasonable conditions. This has led Jod (1989) to generalizing Komiya’s
(1981) convex spaces to pseudoconvex spaces where he could prove Browder's
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fixed-point theorem and a Nikaido—Isoda type theorem for the existence of Nash
equilibrium.

To prove the existence of Nash equilibrium without any explicitly stated linear
structure by applying Fan-convexity in its original form fails as is shown by the
counterexample of Jo6 (1986). By adding continuity to Fan-convexity, calling it
CF-convexity, Forgd (1994) proved a Nikaido—Isoda type existence theorem for
Nash equilibrium im-person noncooperative games.

In this paper, we bring the two ideas, pseudoconvexity and CF-convexity to-
gether since, inherently, they are very close to each other. In one, convex sets
are defined as sets invariant under an abstract convex hull operation and then
convex (quasi-convex) functions are defined in the usual way over these convex
sets. In the other, convex hulls of sets are generated by special classes of con-
tinuous functions. It turns out that the basic fixed point theorems remain valid in
very general spaces (more general than pseudoconvex). Based on these theorems,
generalizations of Fan’s inequality, Nash equilibria in noncooperative games and
two-function minimax theorems are proved. These theorems can both be stated in
appropriate convexity spaces and in terms of the generating functions.

Examples are also provided to show that even in finite dimension, there are
convex sets in generalized pseudoconvex spaces generated by continuous functions
that are not homeomaorphic to any traditional convex set.

2. Generalized pseudoconvex spaces

For the simplicity of exposition, whenever we say topological space we always
mean a Hausdorff space in which every point has a denumerable neighborhood
base 411, T>-space) even if less would be enough at certain places.

Let X £ ¥ be a topological space arid the usual convex hull operation RY'.
Denote the standard simplexRt by A" := (e, ... ,e,) Wheree; (i =1,...,n)
are the unit vectors.

Let a continuous functior : A" —> X be defined for any finite sef :=
{x1,...,x,} C X. We will call the family

F :={dp: F C X isfinite}

a ®-family and its member®-functions Severakb-families can be defined. If just
one function is changed for a particula; we will have a different family. Ad-
function @, assigns ‘generalized convex combinations’ of the pointg ito any
n-tuple of weights inA”,

A ®-family g is called a¥-family and its member& -functions if the functions
W in G are ‘properly synchronized’, i.e. for any := {x4, ... , x,} and for each
subsimpleXe;, , ... . e;) C A",

leF ((ei]_’ 7eik>) - leG ((el’ ,€k>)
whereG = {X,’l,... ,X,’k} C F, e; € A”,ej S Ak, (J =1 ...,k).
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Define a map: : 2¥ — 2% which may have some (or all) of the following
properties:

(H1) K@) =9;

(H2) h(A)#0 if A#0, ACX;

(H2) h(x}h) =x, xelX,

(H3) h(F)is compact for any finite sete c X and

h(A)=U{h(F): F Cc Aisafiniteset, A C X,

(H4) h(h(A)) C h(A), ACX.

We will use the following terminology:

hi-operation h satisfies H1, H2, H3;

ho-operation h satisfies H1, H2, H3, H4;

hs-operation A satisfies H1, H2 H3, H4.

h3z is the usuatonvex hull operatioms defined by Komiya (1981) and adopted
by Jo6 (1989). This is so because’H&d H4 implya(h(A)) = h(A) for any
A CX.

For each operation; (j = 1,2, 3), a setA C X is said to besemiconvexf
hj(A) C A andconvexf i;(A) = A.

It is easily seen that iR and B are semiconvex for the operati@n, then so is
AN B foranyA, B C X. This does not hold for convex sets becausé islaot
required. Of course, the intersection of convex sets is convex for operation

Define for eacly = 1, 2, 3:

F1,j- ad-family such that for any, F := {x4, ... , x,} and for each subsimplex
(ei, ... . e,) C A" we have
@r (e ) C Ay (e x ) @

¥, j: same asF ; with the inclusion in (1) replaced by equality:

Dr ((eigs - vei)) =hy ({xip, - xi}) (2)

Similarly, we defineg, ; andg, ; (j = 1, 2, 3) for W-families, when in (1) and
(2) @ is replaced byb .

Foranyi =1,2;j =1, 2, 3;the triple(X, h;, # ;) will be called aP; ;-space
while the triple(X, &, §: ;) a Q; ;-Space.

Note thatP, 3 is the pseudoconvex space introduced by Joo (1989) and studied
by Jod (1989) and Joo6 and Kassay (1995). It is easy to seeQthatis also a
pseudoconvex space withdafamily having a special property.

The following diagram is meant to clarify the relationships among spaces de-
fined above P — P’ means thaP is a P’-space).

P11 &= Pip & Pi3 011 <= Q12 <= Q13
T T T T T T
Py &= Py & Pp3 021 = 022 <= 023

Qi,j:>Pi,j i=12 j=123.
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We say that ab-family (¥-family) generateshe maph if h(F) = ®g(A") (or
h(F) = Wp(A") for any n and finite setF := {xi,...,x,} with the usual
conventioni(9) = .

DenoteG(x, n), (n > 1) a denumerable neighborhood base af X which is
kept fixed throughout and define the neighborhood base of any seX as

G(A,n) = U G(x,n).

X€eA

The case when thé-family (¥-family) is equicontinuous deserves special at-
tention. Define forany € N, A € A", @7 : X" — X, ®(x1,...,x,) = DPp(R)
if F:= {x1,...,x,}. The®d-family is said to beequicontinuougrelative to the
fixed basas), if for any k € N, there is art = £(k) such that

n

ye[]G&;.0) = @) € G (P} (x). k)
j=1

foralln e N, x := (x1,...,x,) € X", A € A". Note that? is not allowed to
depend om, x andi. The definition is analogous fd¥-families.

At certain junctures, continuity of operatignwill play an important role# is
said to becontinuousif for any A C X, n € N, there exists & = k(A, n), such
that

B CG(A, k) = h(B) C G(h(A),n).

PROPOSITION 1. If the mapk is generated by an equicontinuodsfamily (or
W-family), then it is continuous.

Proof. It is enough to prove the proposition fdr-families. LetA C X be
arbitrary. Based on the definition bfand @7,

=) U ®w.

neN LeA" xe A"

By the definition of equicontinuity, to any € N, there is arf = £(k), such that
ye[]Gw;, 6= @) € G(V}(x), k)
j=1

holds foranyn € N, A € A" andx € A".
Let now B C G(A, ¢) be arbitrary. Then the above implication holds for all
y € B", neN, A e A"andx € A". Thus by the definition ok, we have

BCG(A, ) = h(B) C G(h(A), k)

that is, is continuous. O
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REMARK 1. If A is compact, then it is not hard to show tliatan be chosen not
to depend o anda. Independence of still remains to be verified in actual cases.

EXAMPLE 1. LetX := [-1,1] Cc R with the Euclidean topologyF :=
{xl,... ,x,,} Cc X, A= ()\1,... ,)»,1) e A",

Yr(h) = \JAaxd 44 D2,
h(F) := Wp(A").
Thus, thew-family generates @ ;-space. We will verify thak is continuous by
showing that thel-family is equicontinuous.

LetA C X be arbitrarye > 0, x := (x1,... ,x,) € A", L :=(Ay,... ,Ay) €
A"andy = (y1,...,y,) € X"suchthaty, —x;| <eforall j =1,... ,n. By
simple algebra, we can see that

\/kle+"'+knx,f—\/klyf+---+)»,,y,§ <e

where the right hand side does not depend onanda.

In the following, when referring to spacés;, Q; ; with a continuous:-operation,
we will use the notatiorP; ;, Q; ;.

For the magh to be arv j-operation, the generating families must satisfy certain
conditions.

PROPOSITION 2. The spacéX, i, ) generated by a-family is aQ ;-space.
Proof. H1, H2, H3 is always required and (2) obviously follows from

h({xil,... ,xik}):\IJG ((eil,... ,eik>). O
The ®-family F (or W-family §) is said to have theomposition propertyf for
any finite sets and simplexes

F = {x1, ..., x}, A= (..., hp) € A%

F, = {z%, ... ,z%l}, ,ul = (Mi, ... ’“%1) e A"

Fi Ch(F), x1=®p(uh

F, = {zi,...,zlgk}, uk = (,u’i,...,,u’lfk)eAek;
Fi Ch(F), xi = ®p (")
G = F]_U---UFk = {yl,... ,yr}

and withy := (y1, ..., y,) € A" defined as

=1 s=1
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where
S 10 otherwise
we have

Pr(A) = Pg(y)
(Orve(A) = ¥g(y)).

PROPOSITION 3. If ¢ has the composition property, then the sp&&e i, §)
generated by al-family is aQ, ,-space.

Proof. By Proposition 2, we only have to show that (H4) is satisfied.d et
h(h(A)). By H3, and sincé: is generated by &-family, d = W (1) for a finite set
F :={x1,...,x:} Ch(A), e Ak Sinceforanyie(,...,k), x;e€FC
h(A), thereforex; = W, (1), u' € A, whereF; := {2}, ...z} } C A.LetG =
U F; :={y1,..., ). Clearly,G C A. By definingy := (y1,...,y,) € A" as

ke .
! 1 if yi = Zt
- A t 8! , 8! = J ) s
Vi Zt:l Zs:l( )9 s 0 otherwise

we have, by the composition property, that
d=V¥r)=Ys(y) Ch(A)

which was to be proved. O

PROPOSITION 4. If W,,(AY) = {x} for anyx € X, and § has the composi-
tion property, then the spacgX, &, §) generated by al-family is a 0, 3-space
(pseudoconvex space).

Proof. Sincex = h({x}) for anyx € X, thereforeA C h(A), A C X
which impliesh(A) c h(h(A)). By Proposition 3(h(A)) C h(A) implying
h(h(A)) = h(A). Thus H1, H2, H3 and H4 are satisfied which means thas an
hs-operation. O

For all practical purposes and in order to establish connection between (general-
ized) pseudoconvexity and CF-convexity, two-point generatiaR-@&nd O-spaces
deserves special attention. We will call a two-point generating funetidanction
which is a continuous functiowm : X? x A> — X satisfying some (or all) of the
following conditions:

(Wl) w(x1, X2; A1, A2) = w(xa, X1; Ao, A1), for all x4, x, € X, (A, Ao) € AZ;
(W2) w(xg,x2; 1,0 = w(xg,x3;1,0), forall xq, xp, x3 € X,

w(xg, x2; 0, 1) = w(xs, x2;0,1), forall xq,xo, x3€ X,
(W2) w(xy,x2;1,0) =x; forallxi,x; € X,
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w(xy, x2;0,1) =xo, forall xq, x> € X,
(W3) w(x, x; A1, 1) = w(x, x; Az, Aa),
forallx € X, (A1, Ap) € A%, (A3, Ag) € A2,
(W3) w(x, x; A1, ko) =x, forallx e X, (A1, Ap) € A?

Al kz) }
W4) w|w| x1, x2; , , X3, A+ Ao, A3 | =
Wa) w | (s 5 22 ) v s

A2 A3

w (X1, w (Xz, X3; )
A2+ Az A2+ Az
w(x1,x3;1,0)if A4+ A3 =0,

):M,)xz-i-)»s] if A 4+ A3 # 0,

forall xq,x0,x3€ X, (A1, A2, A3) € Ag, M+ A2 # 0.

Clearly, W2 and W3 imply W2 and W3 respectively.

Two-point generation oP- and Q-spaces, though different, but closely resem-
bles the generation of convex structures by “mixtures”. For details see Gudder
(1977).

PROPOSITION 5. If w satisfies W1, W2, W3 and W4, then the recursion

Wi (X1, ovn s X5 Ay en, Ag) 1=

N N k-1
1 k-1
w | Wi (Xl,--- s Xk-1 o i ), Xk ZMJ%)
( Zi:l Ai Zi:l Ai i=1

if ¥ > 0,

w(xg, x1; 1, 0) if Zf;ll A =0
fork > 3, and

Wo(xq, x2; A1, A2) = w(xy, X2; A1, A2)
Vi(x, D :=w(x,x,10

produces ab-family by the projection

\IJF()\'la ’)\'k) = w[\pk(xla ’-xk;)\'l, a)\'k),-xl; 1’ 0] If
Fi={x1,...,x}, k>1.

Proof. First we show that ifFf := {x4, ..., x;} is a finite set of distinct points
from X, thenW is well-defined, i.e¥r does not depend on how the pointsfof
are indexed. IfF| = 1, or|F| = 2, then by W1, W2 and W3} is well-defined.
If |F| > 3, then easy but lengthy calculation can show that the way the recursion
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is defined, W1, W2 and W4 together ensure Watis independent of the order in
which w is applied successively to points 8f Continuity of ¥ comes from the
continuity of w.

Lastly, if G c F (for simplicity, without loss of generality, we may assume that
G:={x1,...,x_1}, F:={x1,...,x1_1, xk}), then

We(Ag, oo A—1, 0) = We(xn, - oo, Xp—1, Xg5 Ay ooy Ak, 0)
= w(We_1(x1, oo s X3 Ay ooy Ag—1), X% 1, 0)
= w(Weo1(X1, oo -5 A, oo, A1), X1 L 0) = Wa (A, o0, Agm1)

Thus, since(ry, ..., A1) € AL W ((er, ..., 1) = W (lets - - -, €x-1)
andV¥y is aW-function. ]

Since in all theP- and Q-spaces we have discussed so far convex (semiconvex)
sets are well-defined, following Jo6 and Kassay (1995), convex and quasiconvex
functions can be defined in a natural way(X, i, ¥) is a P-space, o(X, h, §)
is a Q-space, thery : X — R is said to be (quagoncaveif the composite
function f o @5 (or f o W) is (quasi)concave in the usual sense for any finite set
F. f is said to be (quagtonvexif — f is quasi(concave). In other words, if for any
finite setF = {x1,... ,x,Jand(Aq, ..., A,) € A",

f(CDF()\la U] )\n)) > klf(xl) +---+ )\nf(xn) ’ (3)

then f is concave, if

F(@pQa, ... A) Z min{f(x1), ..., f(x)},

then it is quasiconcaved(r should be replaced b¥ - if we work with Q-spaces).

PROPOSITION 6. If f is quasiconcave in &, ;-space, therl., := {x € X :
f(x) > ayandL, := {x € X : f(x) > a} are semiconvex. IL, (or L,) is
semiconvex in &; ;-space for any: € R, then f is quasiconcave.

Proof. To prove the first assertion, we have to show thdt,) C L,. Letx €
h(L,). Then there is a finite sét := {x1, ..., x,} C L, and continuous function
®r suchthatc = ®x(Ayq, ..., A,) forsome(ryq, ..., A,) € A" and

F(@rQy, ... A) Zmin{f(x), ..., f)} >a

which is exactly what was to be proved.

To prove the second assertion, let= {x1,...,x,} andx := (A1,...,A,) €
A". Leta := min{f(xy), ..., f(x,)}. Then the following inclusions hold true by
(), F c L, and the semiconvexity dt,

®r(A) Ch(F) Ch(L,) CL,.

®r(M) C L, is exactly the definition of quasiconcavity. O
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The case when @-space is generated by anfunction is especially impor-
tant since, in this case, a direct link can be established between CF-concavity and
the concavity defined above. We recall the definition of CF-concavity from Forgo
(1994).

Let X be a topological space and: X —> R. f is said to beCF-concavef
there is a continuous functian such that for any, x, € X and(iq, 1) € A2

Sw(xg, x25 A1, A2)) 2 A f(x1) + Az f(x2) . (4)
f is said to beCF-quasiconcavé instead of (4) we require
Sfw(xg, x25 A1, A2)) = min{f(x1), f(x2)}. (5)

Note that beyond continuity, nothing else is assumed adout

PROPOSITION 7. If the w-function in(4) satisfies W1, W2, W3 and W4 and
generates aD, ,-space through th&-family defined in Proposition 5, then any
CF-(quasi)concave function is also (quasi)concav@iy.

Proof. For concave functions the proposition was proved in Forgo (1994, Lemma
1). For quasiconcave functions, we use the same method of proof. By induction,
we assume that for each < k — 1 (k > 3) there is a continuous functiow;
generated by recursively as in Proposition 5 and for which

FOV(xg, oo, x5 A, . 4) > min{ f(xy), ..., f(x)}.

Fork = 3, the assertion obviously holds by (5).
Fork > 4, let

Wie(X1, oo, X5 AL, o oe, Ag)

Al M
=w | We—1Grons o oo X1 >, ZMJ»k)
(( Zi:l Ai Zl 1 )“

assumlngz k # 0. By W2 and W4, it does not matter howy, ... , x;, are
indexed. By mductlon and sincgis CF-quasi-concave, we have

FWe(x1, oo X A, o, Ag))

MM Mo
= f [(Wk—l (xl, cee s Xk—1, k—1 EECICE ) ) ) Z)\'lv )\'k}
Zi:l )“i Zz 1 )“

> min |:f (\I! (x x M Mt ()
= k—1 1y ee s k*l?Tv""T ’ k
Zi:l Ai Zi:l Ai

Z min{f(xy), ..., -1, f()}- 0

Now, we will show that even if nothing but continuity is assumedvof P; ;-
space can be generated by the proper choide bkt ; be a particular order of



36 F. FORGO AND I. J®

the elements of the finite sét := {x1, ..., x;} and denotdl, all thek! possible
orders. By the recursion in Proposition 5, a continuous functigh: AF — X
can be defined with the repeated applicatiomwot et

h = U o7

el
and fix a particular ordet,. Define
Op = P°
and

F :={®p: F C X isfinite}.

PROPOSITION 8. (X, h, ) is a Py 1-Space.

Proof. The only thing we have to show is that (1) holds for aby (F :=
{x1,...,x}) and(e,»l, ... ,eik) C A". The index sefiy, ... , i} can be supple-
mented to produce an ordef on F. By the way the recursion is defined (whether
a particularx; ¢ F or it carries a weight ; = 0 results in the same function value)
we have

D ((eil, e ,eik)) = o7t ((eil, . ,eik>) C U o ((eil, e ,eik))

myell,

:h(x,-l,...,x,-k). O

We give two simple examples to show that eveRirandR? with the Euclidean
topology, there are semiconconvex and convex sets not homeomorphic to any usual
convex set irR* or R?.

EXAMPLE 2. LetX:=[-11]andF :={x1, ... ,x,} C X, A:=Q1,... , X)) €
Al‘l’

Wr) = A+ o a2,

and Q» i the space generated by tirefamily.
Let [a, b] be aline segment, & a < b < 1and AC [—b, —a] an arbitrary
set. ThenB := A U [a, b] is a semiconvex set sinég€B) = [a, b] C B.

EXAMPLE 3. LetX C R? X := {x = (x1,%) : X2 + x2 < 1} andw : X? x
A2 —5 X

w(x, y; A1, Ap) = (\/)»ME + A2y2, \/Alxé + sz%) .
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Then easy calculation shows that the recursion in Proposition 5 producds the
functions:

1 1
Wy @ = (1x"1 1)

Wi, by, ey Ag)
2 2 2 2
_ (\/klx;l) b faa® ’\/klxél) bt )

(A, -, M) € AF.

Thus the space generated by thdamily through (2) (and eventually through
w) is a 0z 1-space. In this space, any circle lingr) := {(x1, x2) : x2 + x5 = r}
(0 < r < 1) is a semiconvex set since for any finite get= {x®, ... ,x®} c
L(r), hi(F) C L(r). The circle line is known to be not homeomorphic to any
convex set irR* or R?.

Now define, forany > 1, F := {x®, ... . x®}and(hy,... , 1) € A*

Wit (A, ..., M) i= (a, b)
Ui (Ag, ..., Ax) == (a, —b)
Ut (Ag, .o, M) i= (—a, b)
U, (A, .ee s M) i= (—a, —b)

where

1)2 k)?
a:\/)\lxi) +---+)\kx£)

b= \/klxél)z + -+ Akxék)z .
Let
h(F) =¥ T (AhH uwt—(ahHuw+HahHuw——(ah
and
G :={Wi*: F c Xisfinite} .

Then(X, h, §) is a1 1-space in which any circle-ling(r) is a convex set.

In subsequent sections, occasionally, we will be working with Cartesian prod-
ucts of P- and Q-spaces. We only define the Cartesian product of two
P-spaces, the extension to finitely many spaces@sgpaces is straightforward.

Let PV = XD O FD)y and P?@ = (X@ 1P, F@) be two
P-spaces. Defing®? := X® x X@ and 2 .= (P . F c x12 s
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finite}, where

5% = o) x o A" — X2,

F = {(X]_, yl)7 ey (xn, yn)} ,

Fi={(x1,...,x,)} C X(l),

F={01,...,m)} C X,

Furthermore,
h12(A) .= kY2 (F) : F c Ais afinite sef,

where ht2(F) = h®(F) x h®(F,). Now, the Cartesian product of
P® andP@ is defined as

pl2 . (X(l’z) ) y(l-,Z)).

3. Fixed point theorems

Fixed point theorems i®?- and Q-spaces, as generalizations of classical theorems
of Brouwer, Browder and Kakutani, deserve special attention in their own right
but also as vehicles for proving a host of important theorems in several areas of
mathematics, game theory and economics.

The first significant result demonstrating the potential of pseudoconvex spaces
was the proof of Browder's fixed point theorem by Jo6 (1989). Browder’s theorem,
however, remains valid in more general spaces, in particular, in the most general
space we defined in Section 2.

THEOREM 1 (Browder).Let (X, i, ¥) be a compact; ;-space andl’ : X —
2% a map for which

T (x) # @ and semiconvex for all € X ;

Tl y)={xeX:yeT(x)}isopeninX forall ye X.

Then there is a pointy € X for whichxg € T (xg).

Proof. U,cx{T~(y) : y € X} D X is an open covering oX. SinceX is com-
pact, there is a finite subcovering_,7-1(y;). Let F := {y1,..., y,} andA; :=
T ) Nh(F),(i =1,...,n). ThenAq,..., A, is an open covering oi(F)
which is compact by assumption H3. Therefore, there exists a partition of unity
subordinate to this covering, i.e. there exist continuous funcifon&(F) — R,
such thatg; > 0, suppp; C A; foralli = 1,... ,nand) " ;5 = 1. Define
g h(F) — A", g(z) :=Y__,B:(2)e;. The composite functiopo ®p : A" —>
A" is continuous and, by Brouwer’s fixed point theorenRif has a fixed point



FIXED POINT AND EQUILIBRIUM THEOREMSIN PSEUDOCONVEX AND RELATED SPACES 39

A* e A" le. A = g(Dr(M¥)). Denotingx™® := ®y(A*), we havex* = &r(g(x*)).
Let 8, (x*) > O, ..., B, (x*) > 0, while the other coordinates are 0. By property
(1), x* € h({yi, ..., yi}). Since supps; C A;, x* € A; N--- N A; from
which, by the definition off 1, Yigs -+ 5 Vi, € T(x*). SinceT (x*) is semiconvex,
x* € h({yigs -+ i} C T ). =

To generalize Kakutani’'s fixed point theorem we will need the continuity of the
h-operation.

THEOREM 2 (Kakutani).Let (K, k, ) be a compacP; 1-space andf : K —
2K a multifunction for whichf (x) # ¢ and semiconvex for any € K and the
graphG; := {(x,y) : x € K,y € f(x)}is closed. Then there is art € K for
whichx* € f(x*).

Proof. For the proof, without loss of generality, we will assume that for any
x € X, the neighborhood bas&(x, n) has been ‘synchronized’ i.e. forany < N,
x € X andx, — x, there is amg such that

G(xy,n) C G(x,N), n>ng. (6)
Furthermore
yeGx,n) << xeGl,n), x,yeX, neN. @)

We also need the following lemma.

LEMMA 1. Foranyx € K, n € N, there isanV € N, such that

xX' € G(x,N) = f(x) C G(f(x),n).
Proof of lemmaSuppose that Lemma 1 is not true. Then therexgre X, ng €
N such that there is am, € G(xo, N), yv € f(xy) butyy ¢ G(f(xo),no) for
anyN e N. Letx,, — xo. By compactness, there is a sequefige} converging
to any* € K. SinceGy is closed, we have,, — xo, yv, —> Y% Y, €
fxy,) = y* € f(x0). Onthe other hand'\ G (f (xo), n) being closed angly €
K\ G(f(xg), n), we havey* ¢ G(f(xo), ng) = y* ¢ f(xg), a contradiction.O

Now turning to the proof of the theorem, Iat € N be arbitrary. Sinc& is
compact, the covering

kK cl]JGx N

xekK

has a finite subcovering:

m

Kcl|JGxiN.
i=1
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Take a partition of unity subordinate to this covering, i.e. continuous functions
w; : K — R to satisfy

w; >0, suppw, CG(x;,N) (=1,...,m), Zwizl.

Let y; € f(x;) be arbitrary, F == {y1,...,y.}, g : W(F) — A",
g(x) := 3" jw;(x)e;. Furthermore, leg o ®f : A™ —> A™. By the continuity of
w; and®r, godf is a continuous mapping af” into itself and thus, by Brouwer’s
fixed point theorem, there is a fixed-pokif = g o r(A}).

Letxy := ®r(X}y). Theniy = g(xy). In A} only those components are non-
zero for whichx}, € G(x;, N). Denote these indexes by, ... ,i,. On the other
hand, by (1), we have

)\.}'i/ c (6,’1, ey e,-r> — X:/ = CDF()\.;]) c ]’l({yil, e, yir}) .

By (7),x;, € Gx}y, N), (j =1,...,1).
Since K is compact, there exists a subsequemnfe — x* € K. Let now
M € N be arbitrary. By the continuity df, there is an\/; € N such that

B C G(f(x"), M) = h(B) C G(h(f(x™), M) C G(f(x™), M) ©)

since f (x*) is semiconvex.
By Lemma 1, there exists af, € N for which

xi; € G(X*, Mp) = f(xi;) C G(f(x¥), My). )
Sincexy, —> x*, by (6), ifk is large enough, we have

xi, € G(xjy,, Ni) C G(x*, M) .
Therefore, by (8) and (9)

yij € f(xi)) CG(f(x), M) = h({yiy, ...,y }) CG(f(x"), M).
Sincex,*;,k € h({yiy, ..., ¥, }), we have

Xy € G(f(x), M).

Take ayy, € f(x¥). Clearly,xy € G(yy,, M) for k > ko, where we can suppose
thatkg = ko(M) — oo asM — oo.

Finally, let N* € N be arbitrary. By (7),y;§,k0 € G(x;t,ko, M). Sincex;;,ko — x*
asM —> oo, by (6), we have for large enougf

Vi, € Gk, M) C GG, N).

We have thus obtained that for any € N, there isanv®™” € f(x*)NG (x*, N*),
implying y™) — x* asN* — oco. Sincef(x*) is closedx* € f(x*). O
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In vector spaces, Brouwer’s fixed point theorem is a straightforward conse-
guence of Kakutani's since if is a function (single-valued), thefi(x) being a
singleton is (semi) convex. In Theorem 2, howewey,;-space should be changed
to P 3 if we want to derive Brouwer’s theorem from it because we need to have
H2 satisfied. (Note that H4 was not needed in the proof of Theorem 2 thus it
can be dispensed with if we only want Brouwer’s fixed point theorem to hold.)
Nevertheless, we have the fixed point theorem:

THEOREM 3 (Brouwer). Let K be a compactP; 3-space andf : K — K a
continuous function. Then, there is ahe K such thate* = f(x*).

Another generalization of Brouwer's theorem is the Markov—Kakutani theorem
(see Dugundji and Granes 1982: 75).

THEOREM 4 (Markov—Kakutani).Let K be a compacP; s-space and# a fam-
ily of continuous functiong : K — K satisfying the following conditions:

() forany f e #, the set of fixed pointSix( f) is semiconvex,

(i) forany f,ge H, fog=gof.
Then there is an* € K such thatf (x*) = x* for any f € #.

Proof. We have to prove that ;c »Fix(f) # #. Since f is continuous and
is compact, so is Fi¥). Therefore it is enough to prove the finite intersection
property. The proof goes by induction. For= 1, the finite intersection property
holds since Fixf) # ¢ forany f € # by Theorem 3. Assume now that it holds for
any integer 1< k <n—1. Letx € Fix(fy), 1 <k <n—1.Thenf,(x) € Fix(fy),
1<k <n—1,sincefi(f,(x) = fL(fix)) = f,(x) by (ii). Therefore we have
the inclusion

n—1 n—1
f (ﬂ FiX(ﬁJ) C () Fix(fo) - (10)
k=1 k=1

The setB,_; := m;{’;iFix(fk) is nonempty by the inductive hypothesis, it is com-
pact and semiconvex since Fif), 1<k <n — 1iscompactand semiconvex.
(Note that the intersection of semiconvex sets is also semiconvex.) Then the contin-
uous mapf, : B,_1 —> B,_1 has a fixed point* by Theorem 3 i.ef, (x*) = x*.

By (10),x* € Fix(fi), 1 < k < n, thusn_;Fix(fi) # 9. O

The next example shows that continuity of operatioin Theorem 2 and 3
cannot be dispensed with.

EXAMPLE 4. LetX := {(x,y) € R? : x = cosw, y = sinw, 0 < w < 27} be
the unit circle line and” := {wy, ... , w,} the polar coordinate representation of a
finite subset ofX. Define the functionVy : A" — X as

Wr(A, ..., Ay) 1= [COAw1 + - - - + A wy), SINAqw1 + -+ + A,w,)]
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which, in turn, generates @, s-space via:(F) := Wg(A"). In this space, any sin-
gleton{(x, y)}, (x, y) € X is a convex set. Operatidnis obviously not continuous
at (0, 0).

Consider nowthe map : X — X,

T (x(w), y(w)) := [cow + 7), Sin(w + )]

which is continuous and maps each pointdnto a convex set (singletonY.,
however, has no fixed points. Thus,@ 3, not only Kakutani’s but also Brouwer’s
fixed point theorem fails.

4. Fan inequalities

Fan-type inequalities are very useful tools in nonlinear analysis, game theory and
economics (see Aubin 1979; Fan 1952, 1953). In situations where there is no
explicitly stated linear structure present one needs the Fan inequality in a more
general setting. The following theorem is a generalization of Fan’s inequality in a
P-space.

THEOREMS5. Let (X, h, ) be a compactP, ;-space,f : X2 — R andG :
X — 2% with the following properties:

(1) for eachx € X, x € G(x) andG(x) is semiconvex;

(2) for eachy € X,GY(y) :=={x € X : y € G(x)} is open;

(3) for eachx € X, f(x, ) is quasiconcave oty (x);

(4) for eachy € X, f(-, y)isl.s.c. onX;

(5) for eachx € X, f(x,x) <0.
Then, there is an* € X such thatf (x*, y) < Oforall y € G(x*).

Proof. Assume the result is false. Then, for ang X, the set

Sx):={yeX: f(x,y) >0 NGKx)
is not empty. Define

a :=min sup f(x,y).
xeX yEG(X)

a exists because of the lower semicontinuity 6f-,y) and« > 0 since
Sx) Z@forall x € X. (¢ = oo is possible). Le3 > 0 be arbitrary and define
the mapx — T'(x) for eachx € X

Tx):={yeX: f(x,y)>min{B,a/2}}NG(x).

Foranyx € X, T(x) # @, and it is semiconvex by Proposition 6, sinféx, -) is
guasiconcave and (x) is semiconvex by assumption. Furthermore,

THy) :={x € X: f(x,y) > min{B,a/2}N G 1(y)
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is open by the lower semicontinuity of (-, y) and by property (2). Then, by
Theorem 1, there is a point € T'(x*) i.e.

f&x*, x*) > min{8,a/2} >0,

which contradicts the assumptigi{x*, x*) < 0. O

If G(x) = X for anyx € X, then we obtain the classical version of Fan'’s
inequality. Inclusion of the “neighborhood” function will be of use in proving
existence theorems in game theory.

The following theorem, under somewhat different conditions, is a strict-
inequality version of Theorem 4.

THEOREM 6. Let (X, h, F) be a compaciP,;-space,f : X2 — R and G :
X — 2% with the following properties:

(1) for eachx € X, x € G(x) andG(x) is a closed semiconvex set;

(2) for eachx € X, f(x, ) is quasiconcave oty (x);

(3) f is jointly continuous in both variables ax?;

(4) for eachx € X, f(x,x) <O.
Then, there is an* € X such thatf (x*, y) < Oforall y € G(x*).

Proof. Again, the proof is indirect. If the result were false, then for any X
the set

Ux):={yeX: fx,y) 20NGx)

is not empty and it is semiconvex by Proposition 6, sif¢e, -) is quasiconcave
andG (x) is semiconvex. The graph

Gy ={(x,y)eX?:xeX;yeU)}={(xy e€X?: f(x,y) >0

is closed by the upper semicontinuity 6f., -) and becaus& (x) is closed. Then,
by Theorem 2, the map — U (x) has afixed point* € U (x*), i.e. f (x*, x*) >
0, contradicting the assumptiof(x*, x*) < 0. O

5. Two-function minimax theorems

Two-function minimax theorems are straightforward generalizations of classical
minimax theorems. Given two sek§ Y and two functionsf,g: X x Y — R, a
two-function minimax inequality is

maxming > minmaxf , 11
Xa Y g Y Xa f ( )

where f < g is usually assumed. This inequality holds under various sets of con-
ditions imposed orX, Y, f andg. For a good review see Simons (1995). Simons
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(1981) proved (11) for quasiconvex—quasiconcave functions of suitable continuity
properties in topological vector spaces. Joé and Kassay (1995) extended Simons’
results to pseudoconvex spaces. In the following, we will show that (11) holds in
spaces even more general than pseudoconvex.

THEOREM 7. Let PY := (X,hg”,}‘zflf) and P2 := (Y,hf%}‘zfzf) be two
compactpP, ;-spacesf, g : X x ¥ — Rwith f < g such that
() fisl.s.c.inits second variable, u.s.c. and quasiconcave in its first variable,

(i) gisu.s.c.inits first variable, I.s.c. and quasiconvex in its second variable.
Then

maxmin g(x, y) > minmaxf(x, y).
xeX yeY yeY xeX

Proof. If the result were false, there would beae R such that

minmaxf(x, y) > r > maxming(x, y). (12)
yeY xeX xeX yeY

Let P42 = (Z  ht?, }'Zfll’z)) be the product space @} and 3, whereZ =

X x Y.DefineT : Zx Z — Rby

T((,X\,SJ\), (x,)’)) = min{f(x,j’\) =-nr _g(’x\’ )’)}

We can easily see tha ;> andT satisfy the conditions of Theorem B.is I.s.c.
in the first variable sincg is I.s.c. in its second variablg,is u.s.c. in the second
variable and the minimum of two |.s.c. functions is also |.§.¢s quasiconcave in
the second variable becauges quasiconcave in the firsg,is quasiconvex in the
second variable and the minimum of quasiconcave functions is also quasiconcave.
f(x,y) < g(x,y) implies that ((x, y), (x, y)) < 0.

Thus, by Theorem 5, there is &r*, y*) € Z such that

T((x*,y),(x,y) <0

forany(x, y) € Z. Hence,f (x, y*) < rorg(x*, y) > rforany(x, y) € Z, which
means that

minmaxf(x,y) <r

yeY xeX
or
maxmin >r,
xeX yeY g(x, y) d
contradicting (12). O

Theorem 6 can be used to prove a ‘strict’ two-function minimax theorem under
somewhat different conditions.
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THEOREM 8. Let Py, := (X,h(ll), 7Y) and P = (Y, n?, 757) be two
compactP, ;-spacesf, g : X x ¥ — Rwith f < g such that
() fisl.s.c.inits second variable, jointly u.s.c. in both variables and quasi-
concave in its first variable,
(i) gisu.s.c.initsfirst variable, jointly |.s.c. in both variables and quasiconvex
in its second variable.
Then

maxming(x, y) > minmaxf(x, y).
xeX yeY yeY xeX

Proof. The proof goes along the lines of Theorem 7 and it is indirect again. If
the result were not true, then there would be-anR such that

minmaxf(x, y) > r > maxming(x, y). (13)
yeY xeX xeX yeY

Define the same map as in the proof of Theorem 7. This time, we will show
that T satisfies the conditions of Theorem 6.

T is quasiconcave in the second variable since we have the same quasicon-
cavity/convexity conditions as in Theorem 7. Singés jointly u.s.c.,g is jointly
l.s.c. in both variablesT is the minimum of two jointly u.s.c. functions. There-
fore, T is also jointly u.s.c. in both variables. Alsg(x, y) < g(x, y) implies

T((x,y), (x,y) <O.
Thus, by Theorem 6, there is an*, y*) € Z such that

T((x*y9), (x,y) <0

forany(x, y) € Z. Hencef (x, y*) < r or g(x*, y) > r for any(x, y) € Z which
means that

minmaxf(x,y) <r

yeY xeX
or
maxmin g (x, ,
xeX yeY g(x y) =T
contradicting (13). O

In view of Proposition 5, a version of Theorem 7 (and Theorem 8) can be stated
in terms ofw-functions without any reference # ; (or P, 1) spaces.

THEOREM 9. LetX andY be compact topological spacef,g : X x Y — R,
f < g andjointly continuous in both variables. If there exists a continuous function
w1 : X? x A2 — X such that for any1, xp € X, (A1, Ap) € A?

fwi(xg, x2; A1, A2), ¥) = min{ f(x1, ), f(x2, )}
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holds for anyy € Y, and there exists a continuous functieg : Y2 x A> — Y
such that for anyy, yo € ¥, (i1, o) € A?

g(x, waly1, y2; 1, m2)) < maxg(x, y1), g(x, y2)}
and w1, w, have properties W1, W2. W3, W4, then

maxming(x, y) > minmaxf(x, y).
xeX yeY yeY xeX

Proof. The result directly follows from Proposition 5 and Theorem 7. O

Theorem 8 can also be restated in the same spirit.

Theorem 2, being a generalization of Kakutani’s fixed point theorem, enables
us to prove a ‘reverse’ theorem for two-function minimax in a more general setting
than in Forgé and Jo6 (1998, to appear).

In order to state the theorem we need a few definitions. A fungtioR?> — R
is said to be aubmaximunfunction if for anyu, v € R, ¢(u, v) < max{u, v}. Let
X andY be nonempty setsanfl g : X xY — R. Given a submaximum function
o, f is said to bep-concave-likewith respect tq, if for all A > 0 and x, x, € X,
there existsz € X such that

y € Y :>g(X3, y) 2(»0[.}(()61’ y)’f(XZ’ y)] —A.

Note thatxz depends on, ¢, x1, x».
For any fixedxy, x, € X andAr > 0 defineZ : X — 2¥ and for anyx € X,
d>: X — Ras

Z(x)={yeY:gk,y) <olf(x1,y), f(x2, )] — A}
dz(x) := yrenzl(% g(x,y).

THEOREM 10. Let(X, h1, ¥1.1) be acompac?l,l-space and” a compact topo-
logical space,f, g : X x Y —> R continuous functions ang@ a continuous
submaximum function. If
() for any nonempty closed sktC Y,
maxmin ,¥) = minmaxf(x,y),
xeX yekK g(x y) = yeK xeX f<x y)

(if) for any nonempty closed s&t C Y, the set of maximizers
arg max{ min ,
gma {yeK gx y)}

is semiconvex, thefi is g-concave-like with respect ip
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Proof. Suppose, on the contrary, thatis notg-concave-like with respect to.
Then there exist > 0 andxy, x, € X such that for any € X the setZ(x) is not
empty. By the continuity off, g andg, Z(x) is compact for anyt € X and thus
d; is continuous. Therefore, for any € X, the set-valued mapping — S(x)
where

Sx) = {x eX:xearg mim;(x)}

is u.s.c. By assumption (ii), the map is also semiconvex. Thus by Theorem 2, there
existsx* € X such thatt* € S(x*), i.e.

d+(x*) = min * max min
o) = min g7, y) =max min g(x,y).

Then for anyy € Z(x*),

max_min g(x ) < olf(x1,y), fx2, )] —
xeX yeZ(x*

Sinceg is a submaximum function

(p[f(-xl’ y) f(-xz’ y) maX{f(X]_, y) f(-xz’ y)}
implying

max min g(x,y) < min maxf(x,y),
xeX yEZ(x*)g( y) yeZ(x*) xeX f( y)

which is a contradiction to assumption (i). O

6. Existence of Nash equilibria

Existence of Nash equilibria for noncooperative games in strategic form has been
a central issue in game theory ever since it was first established by Nash (1950)
for mixed extensions of finite games. Another milestone was Nikaido and Isoda’s
(1955) existence theorem for concave games. The latest contribution, extending the
result to topological vector spaces and reducing the continuity requirements to bare
necessities is due to Tan et al. (1995).

With the help of fixed point theorems proved in this paper, we can further gen-
eralize theorems of Nikaido—Isoda-type to spaces with no linear structure. We will
prove three theorems and also provide an example to illustrate how the existence
of Nash equilibrium in a duopoly game can be proved under unusual conditions.

Let N := {1,...,n} be the set of players. ame in strategic fornt" is an
ordered 3-tuple

={Xl”Xnv(pl’7(pnvflv’fl’l}
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where, for each playére N, X; is her strategy space; : X := [[}_; X; — 2%
is her neighborhood function {¢, ... , x,) is the set of reachable strategy
tuples of playerf from (xy, ... , x,) € X),andf; : X — R s her payoff function.

For eachi € N, denoteX_; := [];.y X, andx_; € X_; stands for
(X1, .0 5 Xio1, Xig1, .-, Xp)- Ifx; € X; andx_; € X_;, we use(x;, x_;) to denote
y=(1,...,y) € Xsuchthaty, = x;, y_; = x_;. Ann-tuple (x3, ... ,x}) € X
is aNash equilibrium poinof I if

(7 xZ) € o, x5 and filxf, xZ) > fi(xi, xZ))

holds for allx; € ¢; (x, x*;) and for eachi € N.
To keep notation simple in this section, when we 3ays a P-space (orQ-
space) we mean thak, i, ) is a P-space (orQ-space).

THEOREM 11. LetT = {X1,... X,; 01, ..., @u; f1,..., [} DE @ game with
the following properties:

(1) for eachi € N, X; is a nonempty, compadt; ;-space,

(2) for eachi € N andx € X, ¢;(x) is compact and; € ¢;(x),

(3) for eachi € N, f; is u.s.c. onX,

(4) for eachi € N and fixedu; € X;, the functionf;(«;, -) is l.s.c. onX_;,

(5) for any fixedu € X, thebest reply

n
B(u) =[x =(x1....x,) € X : x; € arg max f; (y, u_)}
i1 YEQ; (u)

is semiconvex.
ThenI" has at least one Nash equilibrium point.

Proof. Since X is the Cartesian product ﬁl,l-spaces, it is also El,l-space.
The best reply correspondenge— B(u), u € X has nonempty values since
¢;(u) # @ and compactf; is u.s.c. By assumptions (2) and (B)u) is a compact,
semiconvex set for any € X. We will now show thatB : © —> B(u) is also
u.s.c. This amounts to showing that the graph

Gg:={(x,y):x€ X,y e Bx)}

is closed. Assume it is not. Then, there is @, y°) ¢ Gp, such that every
neighborhood (in the product topology &ff) of (x°, y°) contains a point o 5.
x% € X, sinceX is closed, therefore® ¢ B(x°) i.e. for at least one player (say
player 1), there is an] € X; such that

fl(y%,xé, . ,x,?) > fl(yg, xg, ... ,x,?). (14)
Define the functiorF : X2 — R as

F(x,y) = fi(y], X2, .o, Xn) — f1(V1 X2, o0, X)) .
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By assumptions (3) and (4¥; is |.s.c., therefore the set
C:={(x,y) € X*: F(x,y) <0

is closed. For anyx,y) € Gg, F(x,y) < 0 but, by (14),F(x°, y% > 0,
contradicting the closedness Gf

Now X and the maB satisfy all the conditions of Theorem 2, therefore there
is anx* € B(x*), which means that* is a Nash equilibrium point of . O

We note that ifP; 1-space is replaced witR, ;-spaceg; has semiconvex values
and f; (-, u_;) is quasiconcave oHN; for any fixedu_; € X_; andi € N, thenB(u)
is semiconvex for any € X. Thus, ifX; is a topological vector space apdx) =
X; for anyx € X for eachi € N, then Theorem 11 reduces to the existence
theorem of Tan et al. (1995, Theorem 2.1), which in turn, is a generalization of the
famous Nikaido—Isoda theorem (1955).

A similar theorem can be proved if assumption (5) is replaced with a somewhat
stricter condition. What we gain is thdt; ; can be relaxed to the more general
Pl,l-space.

THEOREM 12. Letl := {Xq, ..., X5 91, ... » @u f1, ..., [x} DE @ game with
the following properties:

(1) for eachi € N, X; is a non-empty, compaét_;-space;

(2) for eachi € N, ¢; is u.s.c. and for any € X, ¢;(x) is compact and

Xi € ;i (x);

(3) for eachi € N, f; isu.s.c. onX;

(4) for eachi € N and fixedu; € X;, the functionf; (u;, -) is l.s.c. onX _;;

(5) for any fixedu € X, theapproximate best reply

Aw, )= =0n...0) € X fiyi.u_y)
i=1
> max)f,-(z,-, u_;) — A}

Zi€p;(u
is semiconvex for any > O.
Thenl has at least one Nash equilibrium point.

For the proof we will need the following lemma.

LEMMA 2. LetX andY be two compact topological spaces. et ¥ —> 2%
be a u.s.c. map with compact values afid X x ¥ — R u.s.c. onX x Y and
for any fixedx € X, f(x,-) is l.s.c. Then the functiod : Y — R defined by
d(y) = mGa}x)f(x, y) is continuous.

xeG(y

Proof. For anya € R, the lower level seL («) of d can be written as

L):={yeY:dy)<a}= [ (yeY: flx.y) <a}.
xeG(y)
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By the lower semicontinuity of (x, -), L(«) is the intersection of closed sets which
implies thatL (@) is also closed, i.ef is |.s.c.

To prove upper semicontinuity af, takey € Y ande > 0. Sincef is u.s.c., to
anyx € G(y) there is a neighborhood, of (x, y) (in the product topology) such
that for each(u, v) € N, we have

fu,v) < flx,y)+e. (15)
DenoteP; : X x Y —> X the projection taX-space. TherP,(N,) is a neighbor-
hood ofx and

Gy c | PN.

xeG(y)

SinceG(y) is compact, there are finitely many points . .. , x, for which
Gy c|JPi(Ny)

i=1
By the upper semicontinuity af, there is a neighborhood, of y to satisfy

Gw) c | JPi(Ny) (16)
i=1

for anyv € V,. Consider now the following neighborhood pf

V=V, (Q P (Nx,)>

whereP, : X x Y — Y is the projection t&-space. Then, by (15) and (16), for
any(u,v) € Ny, v € V, we get

fu,v) < [max fGi,y)+e<dy) +e¢

for anyx € G(v). This implies the inequality
d(v) <d(y)+e¢

foranyv e V,i.e. disu.s.c.aly € Y. O

Proof of Theorem 12Take an arbitrary positive sequenigg} converging to O.
For anyu € X, consider the corresponding sequence of approximate best replies
A(u, Ar). A(u, Ar) is non-empty and semiconvex by assumptions (2) and (5). For
eachy € X, by Lemma 2 and assumption (4), the function— f; (y;, u_;) —

max f;(z;, u_;) is l.s.c., therefore
zi€pi(u)

AT 2 = Yl € X filyiueg) > max filzp, u) = )

Zicpi(u
i=1 i €gi(
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is open inX. Then all the conditions of Theorem 2 are met for theXeind the
mapA defined on it. Hence, there exists dne X such thatek € A(x*, 1), i.e.
ﬁ(xllc,xfl) > max ﬁ(ziaxli[)_)\k
zi€g; (x)

holds for eactk € N.

SinceX is compact, there exists a subsequefeg of {x*} andx* € X such
thatw® — x*. Letw® := x*® wherek(¢) — oo andi;, —> 0. By Lemma 2
and assumption (3), for eac¢le N,

; k(0) k(¢
fiter, x* ) > lim sup f;(xf @, x4y >
{—>00 kO
im  max fi(zi, x*") = max fi(z,x*).
£—>00 z;eq; (xk©) 2 €p; (x*)

Therefore x* is a Nash equilibrium point of ganie. O

Again, we note that ifP; ;-space in Theorem 12 is replaced By;-space,
then for eachi € N, assumingy; to have semiconvex valueg;(-, u_;) to be
guasiconcave olX; for any fixedu_; € X_;, the approximate best repl/(u, 1)
will be semiconvex for any € X andk € N. Thus, assumption (5) can be stated
in terms of quasiconcavity of the payoff functions. It is easy to see that Theorem
12 also reduces to Theorem 2.1 in Tan et al. (1995) if we drop the neighborhood
functions and restrict ourselves to topological vector spaces.

If continuity and quasiconcavity assumptions are given for the sum of the payoff
functions, then we get another existence theorem.

THEOREM 13. Letll' :== {X4,..., X,; 01, ..., @u; f1,..., fn} DEe a game with
the following properties:
(1) for eachi € N, X; is a non-empty, compadb ;-space;
(2) for eachi € N and anyx € X, x; € ¢;(x), ¢:(x) is semiconvex and
(pl.’l(y) ={xeX:yegx)}isopenforally e X;;
(3) Y, fiisu.s.c. onX;
(4) for eachi € N and fixedu; € X;, the functionf; (u;, -) is l.s.c. onX _;;
(5) for any fixedu € X,
the functiond_"_, f;(-, u_;) is quasiconcave ofi[/_; ¢; (u).
ThenI" has a Nash equilibrium point.
Proof. Define the functiory : X? — R by

glx,y) = Z[fi()’ia x_;) — filxi, x-)]

i=1

andV : X — 2X by

v =TTew.

i=1
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ThenX, g andV satisfy all the conditions of Theorem 5:
(i) X is aP,;-space by assumption (1),
(i) foranyx € X, V(x) is semiconvexyx € V(x) and

Vi ={xeX:ye V)

is open for ally € Y by assumption (2),

(iii) for eachy € X, g(-, y) is l.s.c. by assumptions (3) and (4),

(iv) for any fixedx € X, g(x, -) is quasiconcave ol (x) by assumption (5),

(V) g(x,x) =0forany xe X by the definition ofg.

Thus, by Theorem 5, there is ari € X such thatg(x*,y) < Oforally €
V(x*). For eachi € N andu; € ¢;(x*) sety := (u;,x*;) € V(x*). Then
gx*,y) = fiui,x*,) — fi(xF,x*;) < 0 holds for allu; € ¢;(x*) andi € N
which means that* is a Nash equilibrium point df'. O

Itis easy to state Theorem 13 in a neighborhood function-free form in a topological
vector space setting. Then we will get Theorem 2.2 in Tan et al. (1995). The above
equilibrium theorems can also be rewritten in termawefunctions without any
reference taP-spaces in analogy to how it was done in Theorem 9.

EXAMPLE 5. For anillustration, take a very simple single-product duopoly game
with price differentiation. Demand for the product is unusual, it is high for low and
high prices (e.g. this can be the case for vintage wines and other prestige products).
The decision variable for both firms is price change which varies frdnflowest
possible) to 1 (highest possible) continuously.

For simplicity, we will assume symmetry, therefore it is enough to consider only
one firm (say firm 1). If its price change is denotedipyvhile that of firm 2 byy,
then the chang®; in firm 1's profit is assumed to be given as

yx? if —1<y<0,
Pi(x,y):=40 if y=0,
yx>+y if0<y<1.

Elementary calculation shows that the best-reply corresponderee Bi(y)
for firm 1 is

1 1
- if—1<y<—=
2y 1
[-1,1] ify=0
{1, 1} if0 <y<1.

Compactness of the strategy sets is obvious. The graphisfclosed as shown
in Figure 1, thereforeB is u.s.c.
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3

1
- 11/2
1 -1/2 L
|
Figure 1.

Thew-function (the same as the one in Example 1 and 2A?x[—1, 1]> —
[_17 l]

w(xy, X2; A1, A2) = y/A1xf + Aoxd

generates &, 1-space, withB;(y) semiconvex for each € [—1, 1] as was shown

in Example 2. Thus, Theorem 11 applies and there exists a Nash equilibrium point.
Note that if upper semicontinuity of the best-reply correspondence can be easily

established, then there is no need for checking continuity properties of the payoff

functions.
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