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Abstract. Convexity spaces defined in the paper are generated by families of continuous functions.
Without imposing any explicitly stated linear structure on the spaces, Browder’s, Brouwer’s and
Kakutani’s fixed point theorems are proved and used for deriving generalized Fan inequalities and
two-function minimax theorems. The existence of Nash equilibria in noncooperative games is also
established under more general conditions than known before. The convexity spaces studied in the
paper allow for unusual (generalized) convex sets and functions.
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1. Introduction

Generalizations of the usual convexity inRn have taken numerous directions during
the past fifty years. For an inspirational source and overview we refer to Danzer
et al. (1993), Guddler (1997), Soltan (1984) and Van de Vel (1993). Beginning
with such classics as von Neumann and Morgenstern’s (1944) utility theory and
Stone’s (1949) axiomatization of convex structures an interesting avenue of re-
search has been the extension of important features of convexity to spaces without
an explicitly stated linear structure. An important milestone along the way was the
ground breaking work of Fan (1952, 1953) who introduced, what was later termed,
convex (concave)-like functions. The minimax theorem he proved for convex–
concave-like functions launched an avalanche of one- and two-function minimax
theorems. For an excellent review see Simons (1995). Danzer et al. (1963) have
captured the very essence of generalized convexity when they say: ‘The usual
procedure in defining a generalized convexity is to select a property of convex
sets inRn or En which is either characteristic of convexity or essential in the proof
of some important theorem about convex sets, and to formulate that property or a
suitable variant in other settings.’ When it comes to applications in game theory
and economics, the real test of the power of any sort of convexity is whether the
basic fixed point theorems (Brouwer’s, Browder’s, Kakutani’s) can be carried over
under reasonable conditions. This has led Joó (1989) to generalizing Komiya’s
(1981) convex spaces to pseudoconvex spaces where he could prove Browder’s
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fixed-point theorem and a Nikaido–Isoda type theorem for the existence of Nash
equilibrium.

To prove the existence of Nash equilibrium without any explicitly stated linear
structure by applying Fan-convexity in its original form fails as is shown by the
counterexample of Joó (1986). By adding continuity to Fan-convexity, calling it
CF-convexity, Forgó (1994) proved a Nikaido–Isoda type existence theorem for
Nash equilibrium inn-person noncooperative games.

In this paper, we bring the two ideas, pseudoconvexity and CF-convexity to-
gether since, inherently, they are very close to each other. In one, convex sets
are defined as sets invariant under an abstract convex hull operation and then
convex (quasi-convex) functions are defined in the usual way over these convex
sets. In the other, convex hulls of sets are generated by special classes of con-
tinuous functions. It turns out that the basic fixed point theorems remain valid in
very general spaces (more general than pseudoconvex). Based on these theorems,
generalizations of Fan’s inequality, Nash equilibria in noncooperative games and
two-function minimax theorems are proved. These theorems can both be stated in
appropriate convexity spaces and in terms of the generating functions.

Examples are also provided to show that even in finite dimension, there are
convex sets in generalized pseudoconvex spaces generated by continuous functions
that are not homeomorphic to any traditional convex set.

2. Generalized pseudoconvex spaces

For the simplicity of exposition, whenever we say topological space we always
mean a Hausdorff space in which every point has a denumerable neighborhood
base (M1, T2-space) even if less would be enough at certain places.

LetX 6= ∅ be a topological space and〈·〉 the usual convex hull operation inRn.
Denote the standard simplex inRn by4n := 〈e1, . . . , en〉whereei (i = 1, . . . , n)
are the unit vectors.

Let a continuous function8F : 4n −→ X be defined for any finite setF :=
{x1, . . . , xn} ⊂ X. We will call the family

F := {8F : F ⊂ X is finite}
a8-familyand its members8-functions. Several8-families can be defined. If just
one function is changed for a particularF , we will have a different family. A8-
function8F assigns ‘generalized convex combinations’ of the points inF to any
n-tuple of weights in4n.

A 8-family G is called a9-familyand its members9-functions, if the functions
9F in G are ‘properly synchronized’, i.e. for anyF := {x1, . . . , xn} and for each
subsimplex

〈
ei1, . . . , eik

〉 ⊂ 4n,
9F

(〈
ei1, . . . , eik

〉) = 9G (〈e1, . . . , ek〉)
whereG := {xi1, . . . , xik } ⊂ F , eij ∈ 4n, ej ∈ 4k, (j = 1, . . . , k).



FIXED POINT AND EQUILIBRIUM THEOREMSIN PSEUDOCONVEX AND RELATED SPACES 29

Define a maph : 2X −→ 2X which may have some (or all) of the following
properties:

(H1) h(∅) = ∅;
(H2) h(A) 6= ∅ if A 6= ∅, A ⊂ X;
(H2′) h({x}) = x, x ∈ X;
(H3) h(F) is compact for any finite setsF ⊂ X and

h(A) = ∪{h(F) : F ⊂ A is a finite set}, A ⊂ X,
(H4) h(h(A)) ⊂ h(A), A ⊂ X.

We will use the following terminology:
h1-operation: h satisfies H1, H2, H3;
h2-operation: h satisfies H1, H2, H3, H4;
h3-operation: h satisfies H1, H2′, H3, H4.
h3 is the usualconvex hull operationas defined by Komiya (1981) and adopted

by Joó (1989). This is so because H2′ and H4 implyh(h(A)) = h(A) for any
A ⊂ X.

For each operationhj (j = 1,2,3), a setA ⊂ X is said to besemiconvexif
hj(A) ⊂ A andconvexif hj(A) = A.

It is easily seen that ifA andB are semiconvex for the operationh1, then so is
A ∩ B for anyA,B ⊂ X. This does not hold for convex sets because H2′ is not
required. Of course, the intersection of convex sets is convex for operationh3.

Define for eachj = 1,2,3:
F1,j : a8-family such that for anyn,F := {x1, . . . , xn} and for each subsimplex〈

ei1, . . . , eik
〉 ⊂ 4n we have

8F

(〈
ei1, . . . , eik

〉) ⊂ hj ({xi1, . . . , xik}) , (1)

F2,j : same asF1,j with the inclusion in (1) replaced by equality:

8F

(〈
ei1, . . . , eik

〉) = hj ({xi1, . . . , xik}) . (2)

Similarly, we defineG1,j andG2,j (j = 1,2,3) for 9-families, when in (1) and
(2)8F is replaced by9F .

For anyi = 1,2; j = 1,2,3; the triple(X, hj ,Fi,j ) will be called aPi,j -space,
while the triple(X, hj ,Gi,j ) aQi,j -space.

Note thatP2,3 is the pseudoconvex space introduced by Joó (1989) and studied
by Joó (1989) and Joó and Kassay (1995). It is easy to see thatQ2,3 is also a
pseudoconvex space with a8-family having a special property.

The following diagram is meant to clarify the relationships among spaces de-
fined above (P H⇒ P ′ means thatP is aP ′-space).

P1,1 ⇐H P1,2 ⇐H P1,3

⇑ ⇑ ⇑
P2,1 ⇐H P2,2 ⇐H P2,3

Q1,1 ⇐H Q1,2 ⇐H Q1,3

⇑ ⇑ ⇑
Q2,1 ⇐H Q2,2 ⇐H Q2,3

Qi,j H⇒ Pi,j i = 1,2; j = 1,2,3 .
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We say that a8-family (9-family) generatesthe maph if h(F) = 8F(4n) (or
h(F) = 9F(4n)) for any n and finite setF := {x1, . . . , xn} with the usual
conventionh(∅) = ∅.

DenoteG(x, n), (n > 1) a denumerable neighborhood base ofx ∈ X which is
kept fixed throughout and define the neighborhood base of any setA ⊂ X as

G(A, n) :=
⋃
x∈A

G(x, n) .

The case when the8-family (9-family) is equicontinuous deserves special at-
tention. Define for anyn ∈ N, λ ∈ 4n,8n

λ : Xn−→X, 8n
λ(x1, . . . , xn) := 8F(λ)

if F := {x1, . . . , xn}. The8-family is said to beequicontinuous(relative to the
fixed baseG), if for any k ∈ N, there is aǹ = `(k) such that

y ∈
n∏
j=1

G(xj , `) H⇒ 8n
λ(y) ∈ G

(
8n
λ(x), k

)
for all n ∈ N, x := (x1, . . . , xn) ∈ Xn, λ ∈ 4n. Note that` is not allowed to
depend onn, x andλ. The definition is analogous for9-families.

At certain junctures, continuity of operationh will play an important role.h is
said to becontinuousif for any A ⊂ X, n ∈ N, there exists ak = k(A, n), such
that

B ⊂ G(A, k) H⇒ h(B) ⊂ G(h(A), n) .
PROPOSITION 1. If the maph is generated by an equicontinuous8-family (or
9-family), then it is continuous.

Proof. It is enough to prove the proposition for8-families. LetA ⊂ X be
arbitrary. Based on the definition ofh and8nλ,

h(A) :=
⋃
n∈N

⋃
λ∈4n

⋃
x∈An

8n
λ(x) .

By the definition of equicontinuity, to anyk ∈ N, there is aǹ = `(k), such that

y ∈
n∏
j=1

G(xj , `) H⇒ 8n
λ(y) ∈ G

(
8n
λ(x), k

)
holds for anyn ∈ N, λ ∈ 4n andx ∈ An.

Let nowB ⊂ G(A, `) be arbitrary. Then the above implication holds for all
y ∈ Bn, n ∈ N, λ ∈ 4n andx ∈ An. Thus by the definition ofh, we have

B ⊂ G(A, `) H⇒ h(B) ⊂ G(h(A), k)
that is,h is continuous. 2
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REMARK 1. If A is compact, then it is not hard to show that` can be chosen not
to depend onx andλ. Independence ofn still remains to be verified in actual cases.

EXAMPLE 1. Let X := [−1,1] ⊂ R with the Euclidean topology,F :=
{x1, . . . , xn} ⊂ X, λ := (λ1, . . . , λn) ∈ 4n,

ψF (λ) :=
√
λ1x

2
1 + · · · + λnx2

n ,

h(F ) := 9F(4n) .
Thus, the9-family generates aQ2,1-space. We will verify thath is continuous by
showing that the9-family is equicontinuous.

LetA ⊂ X be arbitrary,ε > 0, x := (x1, . . . , xn) ∈ An, λ := (λ1, . . . , λn) ∈
4n andy := (y1, . . . , yn) ∈ Xn such that|yj − xj | 6 ε for all j = 1, . . . , n. By
simple algebra, we can see that∣∣∣∣√λ1x

2
1 + · · · + λnx2

n −
√
λ1y

2
1 + · · · + λny2

n

∣∣∣∣ 6 ε
where the right hand side does not depend onn, x andλ.

In the following, when referring to spacesPi,j ,Qi,j with a continuoush-operation,
we will use the notationP i,j ,Qi,j .

For the maph to be anhj -operation, the generating families must satisfy certain
conditions.

PROPOSITION 2.The space(X, h,G) generated by a9-family is aQ2,1-space.
Proof. H1, H2, H3 is always required and (2) obviously follows from

h
({
xi1, . . . , xik

}) = 9G (〈ei1, . . . , eik 〉). 2

The8-family F (or 9-family G) is said to have thecomposition propertyif for
any finite sets and simplexes

F := {x1, . . . , xk}, λ := (λ1, . . . , λk) ∈ 4k;
F1 :=

{
z1

1, . . . , z
1
`1

}
, µ1 := (µ1

1, . . . , µ
1
`1

) ∈ 4`1;
F1 ⊂ h(F), x1 = 8F1(µ

1)

. . .

Fk :=
{
zk1, . . . , z

k
`k

}
, µk := (µk1, . . . , µk`k) ∈ 4`k ;

Fk ⊂ h(F), xk = 8Fk(µ
k)

G := F1 ∪ · · · ∪ Fk := {y1, . . . , yr }
and withγ := (γ1, . . . , γr) ∈ 4r defined as

γj :=
k∑
t=1

`t∑
s=1

(
λt · µts

)
δtsj
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where

δtsj :=
{

1 if yj = zts
0 otherwise

we have

8F(λ) = 8G(γ )

(or9F(λ) = 9G(γ )) .
PROPOSITION 3. If G has the composition property, then the space(X, h,G)
generated by a9-family is aQ2,2-space.

Proof. By Proposition 2, we only have to show that (H4) is satisfied. Letd ∈
h(h(A)). By H3, and sinceh is generated by a9-family, d = 9F(λ) for a finite set
F := {x1, . . . , xk} ⊂ h(A), λ ∈ 4k . Since for anyi ∈ (1, . . . , k), xi ∈ F ⊂
h(A), thereforexi = 9Fi (µi), µi ∈ 4i, whereFi :=

{
zi1, . . . , z

i
`i

} ⊂ A. LetG =
∪ki=1Fi := {y1, . . . , yr}. Clearly,G ⊂ A. By definingγ := (γ1, . . . , γr) ∈ 4r as

γj :=
k∑
t=1

`t∑
s=1

(λtµ
t
s)δ

t
s , δts :=

{
1 if yj = zts
0 otherwise,

we have, by the composition property, that

d = 9F(λ) = 9G(γ ) ⊂ h(A)
which was to be proved. 2

PROPOSITION 4. If 9{x}(41) = {x} for any x ∈ X, and G has the composi-
tion property, then the space(X, h,G) generated by a9-family is aQ2,3-space
(pseudoconvex space).

Proof. Since x = h({x}) for any x ∈ X, thereforeA ⊂ h(A), A ⊂ X

which impliesh(A) ⊂ h(h(A)). By Proposition 3,h(h(A)) ⊂ h(A) implying
h(h(A)) = h(A). Thus H1, H2′, H3 and H4 are satisfied which means thath is an
h3-operation. 2

For all practical purposes and in order to establish connection between (general-
ized) pseudoconvexity and CF-convexity, two-point generation ofP - andQ-spaces
deserves special attention. We will call a two-point generating functionw-function
which is a continuous functionw : X2×42 −→ X satisfying some (or all) of the
following conditions:
(W1) w(x1, x2;λ1, λ2) = w(x2, x1;λ2, λ1), for all x1, x2 ∈ X, (λ1, λ2) ∈ 42;
(W2) w(x1, x2;1,0) = w(x1, x3;1,0), for all x1, x2, x3 ∈ X,

w(x1, x2;0,1) = w(x3, x2;0,1), for all x1, x2, x3 ∈ X,
(W2′) w(x1, x2;1,0) = x1 for all x1, x2 ∈ X,
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w(x1, x2;0,1) = x2 for all x1, x2 ∈ X,
(W3) w(x, x;λ1, λ2) = w(x, x;λ3, λ4),

for all x ∈ X, (λ1, λ2) ∈ 42, (λ3, λ4) ∈ 42,
(W3′) w(x, x;λ1, λ2) = x, for all x ∈ X, (λ1, λ2) ∈ 42,

(W4) w

[
w

(
x1, x2; λ1

λ1+ λ2
,

λ2

λ1+ λ2

)
, x3;λ1+ λ2, λ3

]
=

 w

[
x1, w

(
x2, x3; λ2

λ2+ λ3
,

λ3

λ2+ λ3

)
;λ1, λ2+ λ3

]
if λ2+ λ3 6= 0 ,

ω(x1, x3;1,0) if λ2+ λ3 = 0 ,

for all x1, x2, x3 ∈ X, (λ1, λ2, λ3) ∈ 43, λ1+ λ2 6= 0 .

Clearly, W2′ and W3′ imply W2 and W3 respectively.
Two-point generation ofP - andQ-spaces, though different, but closely resem-

bles the generation of convex structures by “mixtures”. For details see Gudder
(1977).

PROPOSITION 5. If w satisfies W1, W2, W3 and W4, then the recursion

9k(x1, . . . , xk;λ1, . . . , λk) :=

w

(
9k−1

(
x1, . . . , xk−1; λ1∑k−1

i=1 λi
, . . . ,

λk−1∑k−1
i=1 λi

)
, xk;

k−1∑
i=1

λi, λk

)
if
∑k−1

i=1λi > 0,

w(xk, x1;1,0) if
∑k−1

i=1 λi = 0

for k > 3, and

92(x1, x2;λ1, λ2) := w(x1, x2;λ1, λ2)

91(x,1) := w(x, x,1,0)
produces a9-family by the projection

9F(λ1, . . . , λk) := w[9k(x1, . . . , xk;λ1, . . . , λk), x1;1,0] if

F := {x1, . . . , xk}, k > 1 .

Proof. First we show that ifF := {x1, . . . , xk} is a finite set of distinct points
fromX, then9F is well-defined, i.e.9F does not depend on how the points ofF

are indexed. If|F | = 1, or |F | = 2, then by W1, W2 and W3,9F is well-defined.
If |F | > 3, then easy but lengthy calculation can show that the way the recursion
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is defined, W1, W2 and W4 together ensure that9F is independent of the order in
whichw is applied successively to points ofF . Continuity of9F comes from the
continuity ofw.

Lastly, ifG ⊂ F (for simplicity, without loss of generality, we may assume that
G := {x1, . . . , xk−1}, F := {x1, . . . , xk−1, xk}), then

9F(λ1, . . . , λk−1,0) = 9k(x1, . . . , xk−1, xk;λ1, . . . , λk−1,0)

= w(9k−1(x1, . . . , xk−1;λ1, . . . , λk−1), xk;1,0)
= w(9k−1(x1, . . . , xk−1;λ1, . . . , λk−1), x1;1,0) = 9G(λ1, . . . , λk−1) .

Thus, since(λ1, . . . , λk−1) ∈ 4k−1, 9F (〈e1, . . . , ek−1〉) = 9G (〈e1, . . . , ek−1〉)
and9F is a9-function. 2

Since in all theP - andQ-spaces we have discussed so far convex (semiconvex)
sets are well-defined, following Joó and Kassay (1995), convex and quasiconvex
functions can be defined in a natural way. If(X, h,F ) is aP -space, or(X, h,G)
is aQ-space, thenf : X −→ R is said to be (quasi)concaveif the composite
functionf ◦8F (or f ◦9F ) is (quasi)concave in the usual sense for any finite set
F . f is said to be (quasi)convexif −f is quasi(concave). In other words, if for any
finite setF := {x1, . . . , xn} and(λ1, . . . , λn) ∈ 4n,

f (8F (λ1, . . . , λn)) > λ1f (x1)+ · · · + λnf (xn) , (3)

thenf is concave, if

f (8F (λ1, . . . , λn)) > min{f (x1), . . . , f (xn)} ,
then it is quasiconcave. (8F should be replaced by9F if we work withQ-spaces).

PROPOSITION 6. If f is quasiconcave in aP2,1-space, thenLa := {x ∈ X :
f (x) > a} andLa := {x ∈ X : f (x) > a} are semiconvex. IfLa (or La) is
semiconvex in aP1,1-space for anya ∈ R, thenf is quasiconcave.

Proof. To prove the first assertion, we have to show thath(La) ⊂ La. Let x ∈
h(La). Then there is a finite setF := {x1, . . . , xn} ⊂ La and continuous function
8F such thatx = 8F (λ1, . . . , λn) for some(λ1, . . . , λn) ∈ 4n and

f (8F (λ1, . . . , λn)) > min{f (x1), . . . , f (xn)} > a
which is exactly what was to be proved.

To prove the second assertion, letF := {x1, . . . , xn} andλ := (λ1, . . . , λn) ∈
4n. Let a := min{f (x1), . . . , f (xn)}. Then the following inclusions hold true by
(1),F ⊂ La and the semiconvexity ofLa

8F (λ) ⊂ h(F) ⊂ h(La) ⊂ La .
8F (λ) ⊂ La is exactly the definition of quasiconcavity. 2
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The case when aQ-space is generated by anw-function is especially impor-
tant since, in this case, a direct link can be established between CF-concavity and
the concavity defined above. We recall the definition of CF-concavity from Forgó
(1994).

LetX be a topological space andf : X −→ R. f is said to beCF-concaveif
there is a continuous functionw such that for anyx1, x2 ∈ X and(λ1, λ2) ∈ 42

f (w(x1, x2;λ1, λ2)) > λ1f (x1)+ λ2f (x2) . (4)

f is said to beCF-quasiconcaveif instead of (4) we require

f (w(x1, x2;λ1, λ2)) > min{f (x1), f (x2)} . (5)

Note that beyond continuity, nothing else is assumed aboutw.

PROPOSITION 7. If thew-function in(4) satisfies W1, W2, W3 and W4 andw
generates aQ2,2-space through the9-family defined in Proposition 5, then any
CF-(quasi)concave function is also (quasi)concave inQ2,2.

Proof.For concave functions the proposition was proved in Forgó (1994, Lemma
1). For quasiconcave functions, we use the same method of proof. By induction,
we assume that for eachj 6 k − 1 (k > 3) there is a continuous function9j
generated byw recursively as in Proposition 5 and for which

f (9j(x1, . . . , xj ;λ1, . . . λj )) > min{f (x1), . . . , f (xj )} .
Fork = 3, the assertion obviously holds by (5).

Fork > 4, let

9k(x1, . . . , xk;λ1, . . . , λk)

= w
((
9k−1(x1, . . . , xk−1 ; λ1∑k−1

i=1 λi
, . . . ,

λk−1∑k−1
i=1 λi

)
, xk;

k−1∑
i=1

λi, λk

)

assuming
∑k−1

i=1
λi 6= 0. By W2 and W4, it does not matter howx1, . . . , xk are

indexed. By induction, and sincef is CF-quasi-concave, we have

f (9k(x1, . . . , xk;λ1, . . . , λk))

= f
[(
9k−1

(
x1, . . . , xk−1; λ1∑k−1

i=1 λi
, . . . ,

λk−1∑k−1
i=1 λi

)
, xk

)
;
k−1∑
i=1

λi, λk

]

> min

[
f

(
9k−1

(
x1, . . . , xk−1,

λ1∑k−1
i=1 λi

, . . . ,
λk−1∑k−1
i=1 λi

))
, f (xk)

]
> min{f (x1), . . . , f (xk−1), f (xk)} . 2

Now, we will show that even if nothing but continuity is assumed ofw, aP1,1-
space can be generated by the proper choice ofh. Let πk be a particular order of
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the elements of the finite setF := {x1, . . . , xk} and denote5k all thek! possible
orders. By the recursion in Proposition 5, a continuous function8

πk
k : 4k −→ X

can be defined with the repeated application ofw. Let

h :=
⋃
πk∈5k

8
πk
k

and fix a particular orderπ0. Define

8F := 8π0
k

and

F := {8F : F ⊂ X is finite } .

PROPOSITION 8. (X, h,F ) is aP1,1-space.
Proof. The only thing we have to show is that (1) holds for any8F (F :=

{x1, . . . , xk}) and
〈
ei1, . . . , eik

〉 ⊂ 4n. The index set{i1, . . . , ik} can be supple-
mented to produce an orderπ1 onF . By the way the recursion is defined (whether
a particularxj /∈ F or it carries a weightλj = 0 results in the same function value)
we have

8F

(〈
ei1, . . . , eik

〉) = 8π1
n

(〈
ei1, . . . , eik

〉) ⊂ ⋃
πn∈5n

8πn
n

(〈
ei1, . . . , eik

〉)
= h (xi1, . . . , xik) . 2

We give two simple examples to show that even inR1 andR2 with the Euclidean
topology, there are semiconconvex and convex sets not homeomorphic to any usual
convex set inR1 or R2.

EXAMPLE 2. LetX := [−1,1] andF := {x1, . . . , xn} ⊂X, λ := (λ1, . . . , λn) ∈
4n,

9F(λ) =
√
λ1x

2
1 + · · · + λnx2

n ,

andQ2,1 the space generated by the9-family.
Let [a, b] be a line segment, 06 a 6 b 6 1 and A⊂ [−b,−a] an arbitrary

set. ThenB := A ∪ [a, b] is a semiconvex set sinceh(B) = [a, b] ⊂ B.

EXAMPLE 3. LetX ⊂ R2, X := {x = (x1, x2) : x2
1 + x2

2 6 1} andw : X2 ×
42 −→ X

w(x, y;λ1, λ2) :=
(√

λ1x
2
1 + λ2y

2
1,

√
λ1x

2
2 + λ2y

2
2

)
.
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Then easy calculation shows that the recursion in Proposition 5 produces the9-
functions:

9{x(1)}(1) =
(
|x(1)1 |, |x(1)2 |

)
. . .

9{x(1),... ,x(k)}(λ1, . . . , λk)

=
(√

λ1x
(1)2

1 + · · · + λkx(k)21 ,

√
λ1x

(1)2

2 + · · · + λkx(k)22

)
,

(λ1, · · · , λk) ∈ 4k .

Thus the space generated by the9-family through (2) (and eventually through
w) is aQ2,1-space. In this space, any circle lineL(r) := {(x1, x2) : x2

1 + x2
2 = r}

(0 < r 6 1) is a semiconvex set since for any finite setF := {x(1), . . . , x(k)} ⊂
L(r), h1(F ) ⊂ L(r). The circle line is known to be not homeomorphic to any
convex set inR1 or R2.

Now define, for anyk > 1,F := {x(1), . . . , x(k)} and(λ1, . . . , λk) ∈ 4k

9++F (λ1, . . . , λk) := (a, b)
9+−F (λ1, . . . , λk) := (a,−b)
9−+F (λ1, . . . , λk) := (−a, b)
9−−F (λ1, . . . , λk) := (−a,−b)

where

a =
√
λ1x

(1)2
1 + · · · + λkx(k)21

b =
√
λ1x

(1)2
2 + · · · + λkx(k)22 .

Let

h(F) := 9++(4k) ∪9+−(4k) ∪9−+(4k) ∪9−−(4k)
and

G := {9++F : F ⊂ X is finite
}
.

Then(X, h,G) is aQ1,1-space in which any circle-lineL(r) is a convex set.
In subsequent sections, occasionally, we will be working with Cartesian prod-

ucts of P - and Q-spaces. We only define the Cartesian product of two
P -spaces, the extension to finitely many spaces andQ-spaces is straightforward.

Let P (1) := (X(1), h(1),F (1)) and P (2) := (X(2), h(2),F (2)) be two
P -spaces. DefineX(1,2) := X(1) × X(2) andF (1,2) := {8(1,2)

F : F ⊂ X(1,2) is



38 F. FORGO AND I. JÓO

finite}, where

8
(1,2)
F := 8(1)

F1
×8(2)

F2
: 4n −→ X(1,2) ,

F := {(x1, y1), . . . , (xn, yn)} ,
F1 := {(x1, . . . , xn)} ⊂ X(1) ,

F2 := {(y1, . . . , yn)} ⊂ X(2) .

Furthermore,

h(1,2)(A) := ∪{h(1,2)(F ) : F ⊂ A is a finite set} ,
where h(1,2)(F ) := h(1)(F1) × h(2)(F2). Now, the Cartesian product of
P (1) andP (2) is defined as

P (1,2) := (X(1,2), h(1,2),F (1,2)) .

3. Fixed point theorems

Fixed point theorems inP - andQ-spaces, as generalizations of classical theorems
of Brouwer, Browder and Kakutani, deserve special attention in their own right
but also as vehicles for proving a host of important theorems in several areas of
mathematics, game theory and economics.

The first significant result demonstrating the potential of pseudoconvex spaces
was the proof of Browder’s fixed point theorem by Joó (1989). Browder’s theorem,
however, remains valid in more general spaces, in particular, in the most general
space we defined in Section 2.

THEOREM 1 (Browder).Let (X, h,F ) be a compactP1,1-space andT : X −→
2X a map for which

T (x) 6= ∅ and semiconvex for allx ∈ X ;

T −1(y) = {x ∈ X : y ∈ T (x)} is open inX for all y ∈ X .
Then there is a pointx0 ∈ X for whichx0 ∈ T (x0).

Proof.∪y∈X{T −1(y) : y ∈ X} ⊃ X is an open covering ofX. SinceX is com-
pact, there is a finite subcovering∪ni=1T

−1(yi). Let F := {y1, . . . , yn} andAi :=
T −1(yi) ∩ h(F), (i = 1, . . . , n). ThenA1, . . . , An is an open covering ofh(F)
which is compact by assumption H3. Therefore, there exists a partition of unity
subordinate to this covering, i.e. there exist continuous functionsβi : h(F) −→ R,
such thatβi > 0, suppβi ⊂ Ai for all i = 1, . . . , n and

∑n
i=1βi = 1. Define

g : h(F) −→ 4n, g(z) :=∑n
i=1βi(z)ei. The composite functiong ◦8F : 4n −→

4n is continuous and, by Brouwer’s fixed point theorem inRn, has a fixed point
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λ∗ ∈ 4n, i.e. λ∗ = g(8F (λ
∗)). Denotingx∗ := 8F(λ

∗), we havex∗ = 8F (g(x
∗)).

Let βi1(x
∗) > 0, . . . , βik (x

∗) > 0, while the other coordinates are 0. By property
(1), x∗ ∈ h({yi1, . . . , yik }). Since suppβi ⊂ Ai, x∗ ∈ Ai1 ∩ · · · ∩ Aik from
which, by the definition ofT −1, yi1, . . . , yik ∈ T (x∗). SinceT (x∗) is semiconvex,
x∗ ∈ h({yi1, . . . , yik }) ⊂ T (x∗). 2

To generalize Kakutani’s fixed point theorem we will need the continuity of the
h-operation.

THEOREM 2 (Kakutani).Let(K, h,F ) be a compactP 1,1-space andf : K −→
2K a multifunction for whichf (x) 6= ∅ and semiconvex for anyx ∈ K and the
graphGf := {(x, y) : x ∈ K, y ∈ f (x)} is closed. Then there is anx∗ ∈ K for
whichx∗ ∈ f (x∗).

Proof. For the proof, without loss of generality, we will assume that for any
x ∈ X, the neighborhood baseG(x, n) has been ‘synchronized’ i.e. for anyN ∈ N,
x ∈ X andxn −→ x, there is ann0 such that

G(xn, n) ⊂ G(x,N) , n > n0 . (6)

Furthermore

y ∈ G(x, n)⇐⇒ x ∈ G(y, n) , x, y ∈ X , n ∈ N . (7)

We also need the following lemma.

LEMMA 1. For anyx ∈ K, n ∈ N, there is anN ∈ N, such that

x′ ∈ G(x,N) H⇒ f (x′) ⊂ G(f (x), n) .
Proof of lemma.Suppose that Lemma 1 is not true. Then there arex0 ∈ X, n0 ∈

N such that there is anx′N ∈ G(x0,N), yN ∈ f (x′N) but yN /∈ G(f (x0), n0) for
anyN ∈ N. Let x′N −→ x0. By compactness, there is a sequence{yNk } converging
to an y∗ ∈ K. SinceGf is closed, we havex′Nk −→ x0, yNk −→ y∗, yNk ∈
f (xNk ) H⇒ y∗ ∈ f (x0). On the other hand,K\G(f (x0), n) being closed andyN ∈
K \G(f (x0), n), we havey∗ /∈ G(f (x0), n0) H⇒ y∗ /∈ f (x0), a contradiction.2

Now turning to the proof of the theorem, letN ∈ N be arbitrary. SinceK is
compact, the covering

K ⊂
⋃
x∈K

G(x,N)

has a finite subcovering:

K ⊂
m⋃
i=1

G(xi,N) .
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Take a partition of unity subordinate to this covering, i.e. continuous functions
wi : K −→ R to satisfy

wi > 0 , suppwi ⊂ G(xi,N) (i = 1, . . . ,m),
m∑
i=1

wi = 1 .

Let yi ∈ f (xi) be arbitrary,F := {y1, . . . , ym}, g : h(F) −→ 4m,
g(x) :=∑m

i=1wi(x)ei . Furthermore, letg◦8F : 4m −→ 4m. By the continuity of
wi and8F , g◦8F is a continuous mapping of4m into itself and thus, by Brouwer’s
fixed point theorem, there is a fixed-pointλ∗N = g ◦8F(λ

∗
N).

Let x∗N := 8F(λ
∗
N). Thenλ∗N = g(x∗N). In λ∗N only those components are non-

zero for whichx∗N ∈ G(xi,N). Denote these indexes byi1, . . . , ir . On the other
hand, by (1), we have

λ∗N ∈
〈
ei1, . . . , eir

〉 H⇒ x∗N = 8F(λ
∗
N) ∈ h({yi1, . . . , yir }) .

By (7), xij ∈ G(x∗N,N), (j = 1, . . . , r).
SinceK is compact, there exists a subsequencex∗NK −→ x∗ ∈ K. Let now

M ∈ N be arbitrary. By the continuity ofh, there is anM1 ∈ N such that

B ⊂ G(f (x∗),M1) H⇒ h(B) ⊂ G(h(f (x∗),M) ⊂ G(f (x∗),M) (8)

sincef (x∗) is semiconvex.
By Lemma 1, there exists anM2 ∈ N for which

xij ∈ G(x∗,M2) H⇒ f (xij ) ⊂ G(f (x∗),M1) . (9)

Sincex∗Nk −→ x∗, by (6), if k is large enough, we have

xij ∈ G(x∗Nk ,Nk) ⊂ G(x∗,M2) .

Therefore, by (8) and (9)

yij ∈ f (xij ) ⊂ G(f (x∗),M1) H⇒ h({yi1, . . . , yir }) ⊂ G(f (x∗),M) .
Sincex∗Nk ∈ h({yi1, . . . , yir }), we have

x∗Nk ∈ G(f (x∗),M) .
Take ay∗Nk ∈ f (x∗). Clearly,x∗Nk ∈ G(y∗Nk ,M) for k > k0, where we can suppose
thatk0 = k0(M) −→∞ asM −→∞.

Finally, letN∗ ∈ N be arbitrary. By (7),y∗Nk0 ∈ G(x
∗
Nk0
,M). Sincex∗Nk0 −→ x∗

asM −→∞, by (6), we have for large enoughM

y∗Nk0 ∈ G(x
∗
Nk0
,M) ⊂ G(x∗, N) .

We have thus obtained that for anyN∗ ∈ N, there is any(N
∗) ∈ f (x∗)∩G(x∗,N∗),

implying y(N
∗) −→ x∗ asN∗ −→∞. Sincef (x∗) is closed,x∗ ∈ f (x∗). 2
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In vector spaces, Brouwer’s fixed point theorem is a straightforward conse-
quence of Kakutani’s since iff is a function (single-valued), thenf (x) being a
singleton is (semi) convex. In Theorem 2, however,P 1,1-space should be changed
to P 1,3 if we want to derive Brouwer’s theorem from it because we need to have
H2′ satisfied. (Note that H4 was not needed in the proof of Theorem 2 thus it
can be dispensed with if we only want Brouwer’s fixed point theorem to hold.)
Nevertheless, we have the fixed point theorem:

THEOREM 3 (Brouwer). Let K be a compactP 1,3-space andf : K −→ K a
continuous function. Then, there is anx∗ ∈ K such thatx∗ = f (x∗).

Another generalization of Brouwer’s theorem is the Markov–Kakutani theorem
(see Dugundji and Granes 1982: 75).

THEOREM 4 (Markov–Kakutani).LetK be a compactP 1,3-space andH a fam-
ily of continuous functionsf : K −→ K satisfying the following conditions:

(i) for anyf ∈ H , the set of fixed pointsFix(f ) is semiconvex,
(ii) for anyf, g ∈ H , f ◦ g = g ◦ f .

Then there is anx∗ ∈ K such thatf (x∗) = x∗ for anyf ∈ H .
Proof. We have to prove that∩f∈HFix(f ) 6= ∅. Sincef is continuous andK

is compact, so is Fix(f ). Therefore it is enough to prove the finite intersection
property. The proof goes by induction. Forn = 1, the finite intersection property
holds since Fix(f ) 6= ∅ for anyf ∈ H by Theorem 3. Assume now that it holds for
any integer 16 k 6 n−1. Letx ∈ Fix(fk), 16 k 6 n−1. Thenfn(x) ∈ Fix(fk),
1 6 k 6 n− 1, sincefk(fn(x)) = fn(fk(x)) = fn(x) by (ii). Therefore we have
the inclusion

fn

(
n−1⋂
k=1

Fix(fk)

)
⊂

n−1⋂
k=1

Fix(fk) . (10)

The setBn−1 := ∩n−1
k=1Fix(fk) is nonempty by the inductive hypothesis, it is com-

pact and semiconvex since Fix(fk), 16 k 6 n− 1 is compact and semiconvex.
(Note that the intersection of semiconvex sets is also semiconvex.) Then the contin-
uous mapfn : Bn−1 −→ Bn−1 has a fixed pointx∗ by Theorem 3 i.e.fn(x∗) = x∗.
By (10),x∗ ∈ Fix(fk), 16 k 6 n, thus∩nk=1Fix(fk) 6= ∅. 2

The next example shows that continuity of operationh in Theorem 2 and 3
cannot be dispensed with.

EXAMPLE 4. LetX := {(x, y) ∈ R2 : x = cosw, y = sinw, 0 6 w < 2π} be
the unit circle line andF := {w1, . . . , wn} the polar coordinate representation of a
finite subset ofX. Define the function9F : 4n −→ X as

9F(λ1, . . . , λn) := [cos(λ1w1+ · · · + λnwn), sin(λ1w1+ · · · + λnwn)]
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which, in turn, generates aQ2,3-space viah(F) := 9F(4n). In this space, any sin-
gleton{(x, y)}, (x, y) ∈ X is a convex set. Operationh is obviously not continuous
at (0,0).

Consider now the mapT : X −→ X,

T (x(w), y(w)) := [cos(w + π), sin(w + π)]
which is continuous and maps each point inX to a convex set (singleton).T ,
however, has no fixed points. Thus, inQ2,3, not only Kakutani’s but also Brouwer’s
fixed point theorem fails.

4. Fan inequalities

Fan-type inequalities are very useful tools in nonlinear analysis, game theory and
economics (see Aubin 1979; Fan 1952, 1953). In situations where there is no
explicitly stated linear structure present one needs the Fan inequality in a more
general setting. The following theorem is a generalization of Fan’s inequality in a
P -space.

THEOREM 5. Let (X, h,F ) be a compactP2,1-space,f : X2 −→ R andG :
X −→ 2X with the following properties:

(1) for eachx ∈ X, x ∈ G(x) andG(x) is semiconvex;
(2) for eachy ∈ X,G−1(y) := {x ∈ X : y ∈ G(x)} is open;
(3) for eachx ∈ X, f (x, ·) is quasiconcave onG(x);
(4) for eachy ∈ X, f (·, y) is l.s.c. onX;
(5) for eachx ∈ X, f (x, x) 6 0.

Then, there is anx∗ ∈ X such thatf (x∗, y) 6 0 for all y ∈ G(x∗).
Proof.Assume the result is false. Then, for anyx ∈ X, the set

S(x) := {y ∈ X : f (x, y) > 0} ∩G(x)
is not empty. Define

α := min
x∈X

sup
y∈G(x)

f (x, y) .

α exists because of the lower semicontinuity off (·, y) and α > 0 since
S(x) 6= ∅ for all x ∈ X. (α = ∞ is possible). Letβ > 0 be arbitrary and define
the mapx −→ T (x) for eachx ∈ X

T (x) := {y ∈ X : f (x, y) > min{β, α/2}} ∩G(x) .
For anyx ∈ X, T (x) 6= ∅, and it is semiconvex by Proposition 6, sincef (x, ·) is
quasiconcave andG(x) is semiconvex by assumption. Furthermore,

T −1(y) := {x ∈ X : f (x, y) > min{β, α/2}} ∩G−1(y)
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is open by the lower semicontinuity off (·, y) and by property (2). Then, by
Theorem 1, there is a pointx∗ ∈ T (x∗) i.e.

f (x∗, x∗) > min{β, α/2} > 0 ,

which contradicts the assumptionf (x∗, x∗) 6 0. 2

If G(x) ≡ X for any x ∈ X, then we obtain the classical version of Fan’s
inequality. Inclusion of the “neighborhood” function will be of use in proving
existence theorems in game theory.

The following theorem, under somewhat different conditions, is a strict-
inequality version of Theorem 4.

THEOREM 6. Let (X, h,F ) be a compactP 2,1-space,f : X2 −→ R andG :
X −→ 2X with the following properties:

(1) for eachx ∈ X, x ∈ G(x) andG(x) is a closed semiconvex set;
(2) for eachx ∈ X, f (x, ·) is quasiconcave onG(x);
(3) f is jointly continuous in both variables onX2;
(4) for eachx ∈ X, f (x, x) < 0.

Then, there is anx∗ ∈ X such thatf (x∗, y) < 0 for all y ∈ G(x∗).
Proof. Again, the proof is indirect. If the result were false, then for anyx ∈ X

the set

U(x) := {y ∈ X : f (x, y) > 0} ∩G(x)
is not empty and it is semiconvex by Proposition 6, sincef (x, ·) is quasiconcave
andG(x) is semiconvex. The graph

GU := {(x, y) ∈ X2 : x ∈ X ; y ∈ U(x)} = {(x, y) ∈ X2 : f (x, y) > 0}
is closed by the upper semicontinuity off (·, ·) and becauseG(x) is closed. Then,
by Theorem 2, the mapx −→ U(x) has a fixed pointx∗ ∈ U(x∗), i.e.f (x∗, x∗) >
0, contradicting the assumptionf (x∗, x∗) < 0. 2

5. Two-function minimax theorems

Two-function minimax theorems are straightforward generalizations of classical
minimax theorems. Given two setsX,Y and two functionsf, g : X × Y −→ R, a
two-function minimax inequality is

max
X

min
Y
g > min

Y
max
X
f , (11)

wheref 6 g is usually assumed. This inequality holds under various sets of con-
ditions imposed onX,Y, f andg. For a good review see Simons (1995). Simons
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(1981) proved (11) for quasiconvex–quasiconcave functions of suitable continuity
properties in topological vector spaces. Joó and Kassay (1995) extended Simons’
results to pseudoconvex spaces. In the following, we will show that (11) holds in
spaces even more general than pseudoconvex.

THEOREM 7. Let P (1)2,1 :=
(
X,h

(1)
1 ,F

(1)
2,1

)
andP (2)2,1 :=

(
Y, h

(2)
1 ,F

(2)
2,1

)
be two

compactP2,1-spaces,f, g : X × Y −→ R with f 6 g such that
(i) f is l.s.c. in its second variable, u.s.c. and quasiconcave in its first variable,
(ii) g is u.s.c. in its first variable, l.s.c. and quasiconvex in its second variable.

Then

max
x∈X

min
y∈Y

g(x, y) > min
y∈Y

max
x∈X

f (x, y) .

Proof. If the result were false, there would be anr ∈ R such that

min
y∈Y max

x∈X
f (x, y) > r > max

x∈X
min
y∈Y g(x, y) . (12)

Let P (1,2)2,1 :=
(
Z, h

(1,2)
1 ,F (1,2)

2,1

)
be the product space ofP (1)2,1 andP (2)2,1, whereZ =

X × Y . DefineT : Z × Z −→ R by

T ((̂x, ŷ), (x, y)) = min{f (x, ŷ)− r, r − g(̂x, y)} .
We can easily see thatP (1,2)2,1 andT satisfy the conditions of Theorem 5.T is l.s.c.
in the first variable sincef is l.s.c. in its second variable,g is u.s.c. in the second
variable and the minimum of two l.s.c. functions is also l.s.c.T is quasiconcave in
the second variable becausef is quasiconcave in the first,g is quasiconvex in the
second variable and the minimum of quasiconcave functions is also quasiconcave.
f (x, y) 6 g(x, y) implies thatT ((x, y), (x, y)) 6 0.

Thus, by Theorem 5, there is an(x∗, y∗) ∈ Z such that

T ((x∗, y∗), (x, y)) 6 0

for any(x, y) ∈ Z. Hence,f (x, y∗) 6 r or g(x∗, y) > r for any(x, y) ∈ Z, which
means that

min
y∈Y max

x∈X
f (x, y) 6 r

or

max
x∈X

min
y∈Y g(x, y) > r ,

contradicting (12). 2

Theorem 6 can be used to prove a ‘strict’ two-function minimax theorem under
somewhat different conditions.
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THEOREM 8. Let P
(1)
2,1 :=

(
X,h

(1)
1 ,F

(1)
2,1

)
andP

(2)
2,1 :=

(
Y, h

(2)
1 ,F

(2)
2,1

)
be two

compactP 2,1-spaces,f, g : X × Y −→ R with f < g such that
(i) f is l.s.c. in its second variable, jointly u.s.c. in both variables and quasi-

concave in its first variable,
(ii) g is u.s.c. in its first variable, jointly l.s.c. in both variables and quasiconvex

in its second variable.
Then

max
x∈X

min
y∈Y g(x, y) > min

y∈Y max
x∈X

f (x, y) .

Proof. The proof goes along the lines of Theorem 7 and it is indirect again. If
the result were not true, then there would be anr ∈ R such that

min
y∈Y

max
x∈X

f (x, y) > r > max
x∈X

min
y∈Y

g(x, y) . (13)

Define the same mapT as in the proof of Theorem 7. This time, we will show
thatT satisfies the conditions of Theorem 6.
T is quasiconcave in the second variable since we have the same quasicon-

cavity/convexity conditions as in Theorem 7. Sincef is jointly u.s.c.,g is jointly
l.s.c. in both variables,T is the minimum of two jointly u.s.c. functions. There-
fore, T is also jointly u.s.c. in both variables. Also,f (x, y) < g(x, y) implies
T ((x, y), (x, y)) < 0.

Thus, by Theorem 6, there is an(x∗, y∗) ∈ Z such that

T ((x∗, y∗), (x, y)) < 0

for any(x, y) ∈ Z. Hencef (x, y∗) < r or g(x∗, y) > r for any(x, y) ∈ Z which
means that

min
y∈Y max

x∈X
f (x, y) < r

or

max
x∈X

min
y∈Y

g(x, y) > r ,

contradicting (13). 2

In view of Proposition 5, a version of Theorem 7 (and Theorem 8) can be stated
in terms ofw-functions without any reference toP2,1 (or P 2,1) spaces.

THEOREM 9. LetX andY be compact topological spaces,f, g : X × Y −→ R,
f 6 g and jointly continuous in both variables. If there exists a continuous function
w1 : X2×42 −→ X such that for anyx1, x2 ∈ X, (λ1, λ2) ∈ 42

f (w1(x1, x2;λ1, λ2), y) > min{f (x1, y), f (x2, y)}
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holds for anyy ∈ Y , and there exists a continuous functionw2 : Y 2×42 −→ Y

such that for anyy1, y2 ∈ Y , (µ1, µ2) ∈ 42

g(x,w2(y1, y2;µ1, µ2)) 6 max{g(x, y1), g(x, y2)}
andw1, w2 have properties W1, W2. W3, W4, then

max
x∈X

min
y∈Y

g(x, y) > min
y∈Y

max
x∈X

f (x, y) .

Proof.The result directly follows from Proposition 5 and Theorem 7. 2

Theorem 8 can also be restated in the same spirit.
Theorem 2, being a generalization of Kakutani’s fixed point theorem, enables

us to prove a ‘reverse’ theorem for two-function minimax in a more general setting
than in Forgó and Joó (1998, to appear).

In order to state the theorem we need a few definitions. A functionϕ : R2 −→ R
is said to be asubmaximumfunction if for anyu, v ∈ R, ϕ(u, v) 6 max{u, v}. Let
X andY be nonempty sets andf, g : X×Y −→ R. Given a submaximum function
ϕ, f is said to beϕ-concave-likewith respect tog, if for all λ > 0 and x1, x2 ∈ X,
there existsx3 ∈ X such that

y ∈ Y H⇒ g(x3, y) > ϕ[f (x1, y), f (x2, y)] − λ .
Note thatx3 depends onλ, ϕ, x1, x2.

For any fixedx1, x2 ∈ X andλ > 0 defineZ : X −→ 2Y and for anŷx ∈ X,
dx̂ : X −→ R as

Z(x) := {y ∈ Y : g(x, y) 6 ϕ[f (x1, y), f (x2, y)] − λ}

dx̂(x) := min
y∈Z(̂x)

g(x, y) .

THEOREM 10. Let(X, h1,F1,1) be a compactP 1,1-space andY a compact topo-
logical space,f, g : X × Y −→ R continuous functions andϕ a continuous
submaximum function. If

(i) for any nonempty closed setK ⊂ Y ,

max
x∈X

min
y∈K g(x, y) > min

y∈K max
x∈X

f (x, y) ,

(ii) for any nonempty closed setK ⊂ Y , the set of maximizers

arg max
x∈X

{
min
y∈K

g(x, y)

}
is semiconvex, thenf is ϕ-concave-like with respect tog.
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Proof.Suppose, on the contrary, thatf is notϕ-concave-like with respect tog.
Then there existλ > 0 andx1, x2 ∈ X such that for anyx ∈ X the setZ(x) is not
empty. By the continuity off, g andϕ, Z(̂x) is compact for anŷx ∈ X and thus
dx̂ is continuous. Therefore, for anŷx ∈ X, the set-valued mappinĝx −→ S(̂x)

where

S(̂x) :=
{
x ∈ X : x ∈ arg max

x∈X
dx̂(x)

}
is u.s.c. By assumption (ii), the map is also semiconvex. Thus by Theorem 2, there
existsx∗ ∈ X such thatx∗ ∈ S(x∗), i.e.

dx∗(x
∗) = min

y∈Z(x∗)
g(x∗, y) = max

x∈X
min

y∈Z(x∗)
g(x, y) .

Then for anyy ∈ Z(x∗),
max
x∈X

min
y∈Z(x∗)

g(x, y) 6 ϕ[f (x1, y), f (x2, y)] − λ .

Sinceϕ is a submaximum function

ϕ[f (x1, y), f (x2, y)] 6 max{f (x1, y), f (x2, y)}
implying

max
x∈X

min
y∈Z(x∗)

g(x, y) < min
y∈Z(x∗)

max
x∈X

f (x, y) ,

which is a contradiction to assumption (i). 2

6. Existence of Nash equilibria

Existence of Nash equilibria for noncooperative games in strategic form has been
a central issue in game theory ever since it was first established by Nash (1950)
for mixed extensions of finite games. Another milestone was Nikaido and Isoda’s
(1955) existence theorem for concave games. The latest contribution, extending the
result to topological vector spaces and reducing the continuity requirements to bare
necessities is due to Tan et al. (1995).

With the help of fixed point theorems proved in this paper, we can further gen-
eralize theorems of Nikaido–Isoda-type to spaces with no linear structure. We will
prove three theorems and also provide an example to illustrate how the existence
of Nash equilibrium in a duopoly game can be proved under unusual conditions.

Let N := {1, . . . , n} be the set of players. Agame in strategic form0 is an
ordered 3n-tuple

0 := {X1, . . . , Xn;ϕ1, . . . , ϕn;f1, . . . , fn}
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where, for each playeri ∈ N ,Xi is her strategy space,ϕi : X := ∏n
j=1Xj −→ 2Xi

is her neighborhood function (ϕi(x1, . . . , xn) is the set of reachable strategyn-
tuples of playeri from (x1, . . . , xn) ∈ X), andfi : X −→ R is her payoff function.

For eachi ∈ N , denoteX−i := ∏
j∈N\{i}Xj and x−i ∈ X−i stands for

(x1, . . . , xi−1, xi+1, . . . , xn). If xi ∈ Xi andx−i ∈ X−i, we use(xi, x−i ) to denote
y = (y1, . . . , yn) ∈ X such thatyi = xi , y−i = x−i . An n-tuple(x∗1, . . . , x

∗
n) ∈ X

is aNash equilibrium pointof 0 if

(x∗i , x
∗
−i ) ∈ ϕi(x∗i , x∗−i ) and fi(x

∗
i , x
∗
−i ) > fi(xi, x

∗
−i )

holds for allxi ∈ ϕi(x∗i , x∗−i ) and for eachi ∈ N .
To keep notation simple in this section, when we sayX is aP -space (orQ-

space) we mean that(X, h,F ) is aP -space (orQ-space).

THEOREM 11. Let 0 := {X1, . . . Xn;ϕ1, . . . , ϕn;f1, . . . , fn} be a game with
the following properties:

(1) for eachi ∈ N ,Xi is a nonempty, compactP 1,1-space,
(2) for eachi ∈ N andx ∈ X, ϕi(x) is compact andxi ∈ ϕi(x),
(3) for eachi ∈ N , fi is u.s.c. onX,
(4) for eachi ∈ N and fixedui ∈ Xi , the functionfi(ui, ·) is l.s.c. onX−i ,
(5) for any fixedu ∈ X, thebest reply

B(u) :=
n⋂
i=1

{x = (x1, . . . xn) ∈ X : xi ∈ arg max
y∈ϕi(u)

fi(y, u−i )}

is semiconvex.
Then0 has at least one Nash equilibrium point.

Proof. SinceX is the Cartesian product ofP 1,1-spaces, it is also aP 1,1-space.
The best reply correspondenceu −→ B(u), u ∈ X has nonempty values since
ϕi(u) 6= ∅ and compact,fi is u.s.c. By assumptions (2) and (5),B(u) is a compact,
semiconvex set for anyu ∈ X. We will now show thatB : u −→ B(u) is also
u.s.c. This amounts to showing that the graph

GB := {(x, y) : x ∈ X , y ∈ B(x)}
is closed. Assume it is not. Then, there is an(x0, y0) /∈ GB , such that every
neighborhood (in the product topology onX2) of (x0, y0) contains a point ofGB .
x0 ∈ X, sinceX is closed, thereforey0 /∈ B(x0) i.e. for at least one player (say
player 1), there is any1

1 ∈ X1 such that

f1(y
1
1, x

1
2, . . . , x

0
n) > f1(y

0
1, x

0
2, . . . , x

0
n) . (14)

Define the functionF : X2 −→ R as

F(x, y) := f1(y
1
1, x2, . . . , xn)− f1(y1, x2, . . . , xn) .
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By assumptions (3) and (4),F is l.s.c., therefore the set

C := {(x, y) ∈ X2 : F(x, y) 6 0}
is closed. For any(x, y) ∈ GB , F(x, y) 6 0 but, by (14),F(x0, y0) > 0,
contradicting the closedness ofC.

NowX and the mapB satisfy all the conditions of Theorem 2, therefore there
is anx∗ ∈ B(x∗), which means thatx∗ is a Nash equilibrium point of0. 2

We note that ifP 1,1-space is replaced withP 2,1-space,ϕi has semiconvex values
andfi(·, u−i ) is quasiconcave onXi for any fixedu−i ∈ X−i andi ∈ N , thenB(u)
is semiconvex for anyu ∈ X. Thus, ifXi is a topological vector space andϕi(x) ≡
Xi for any x ∈ X for eachi ∈ N , then Theorem 11 reduces to the existence
theorem of Tan et al. (1995, Theorem 2.1), which in turn, is a generalization of the
famous Nikaido–Isoda theorem (1955).

A similar theorem can be proved if assumption (5) is replaced with a somewhat
stricter condition. What we gain is thatP 1,1 can be relaxed to the more general
P1,1-space.

THEOREM 12. Let0 := {X1, . . . , Xn;ϕ1, . . . , ϕn;f1, . . . , fn} be a game with
the following properties:

(1) for eachi ∈ N ,Xi is a non-empty, compactP1,1-space;
(2) for each i ∈ N , ϕi is u.s.c. and for anyx ∈ X, ϕi(x) is compact and

xi ∈ ϕi(x);
(3) for eachi ∈ N , fi is u.s.c. onX;
(4) for eachi ∈ N and fixedui ∈ Xi , the functionfi(ui, ·) is l.s.c. onX−i ;
(5) for any fixedu ∈ X, theapproximate best reply

A(u, λ) :=
n⋂
i=1

{y = (y1, . . . , yn) ∈ X : fi(yi, u−i )

> max
zi∈ϕi (u)

fi(zi, u−i )− λ}

is semiconvex for anyλ > 0.
Then0 has at least one Nash equilibrium point.

For the proof we will need the following lemma.

LEMMA 2. LetX andY be two compact topological spaces. LetG : Y −→ 2X

be a u.s.c. map with compact values andf : X × Y −→ R u.s.c. onX × Y and
for any fixedx ∈ X, f (x, ·) is l.s.c. Then the functiond : Y −→ R defined by
d(y) := max

x∈G(y)
f (x, y) is continuous.

Proof.For anyα ∈ R, the lower level setL(α) of d can be written as

L(α) := {y ∈ Y : d(y) 6 α} =
⋂

x∈G(y)
{y ∈ Y : f (x, y) 6 α} .
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By the lower semicontinuity off (x, ·),L(α) is the intersection of closed sets which
implies thatL(α) is also closed, i.e.d is l.s.c.

To prove upper semicontinuity ofd, takey ∈ Y andε > 0. Sincef is u.s.c., to
anyx ∈ G(y) there is a neighborhoodNx of (x, y) (in the product topology) such
that for each(u, v) ∈ Nx we have

f (u, v) 6 f (x, y) + ε . (15)

DenoteP1 : X × Y −→ X the projection toX-space. ThenP1(Nx) is a neighbor-
hood ofx and

G(y) ⊂
⋃

x∈G(y)
P1(Nx) .

SinceG(y) is compact, there are finitely many pointsx1, . . . , xn for which

G(y) ⊂
n⋃
i=1

P1
(
Nxi
)
.

By the upper semicontinuity ofG, there is a neighborhoodVy of y to satisfy

G(v) ⊂
n⋃
i=1

P1
(
Nxi
)

(16)

for anyv ∈ Vy. Consider now the following neighborhood ofy

V := Vy
⋂(

n⋂
i=1

P2
(
Nxi

))
whereP2 : X × Y −→ Y is the projection toY -space. Then, by (15) and (16), for
any(u, v) ∈ Nx , v ∈ V , we get

f (u, v) 6 max
16i6n

f (xi, y) + ε 6 d(y)+ ε
for anyx ∈ G(v). This implies the inequality

d(v) 6 d(y)+ ε
for anyv ∈ V , i.e. d is u.s.c. aty ∈ Y . 2

Proof of Theorem 12.Take an arbitrary positive sequence{λk} converging to 0.
For anyu ∈ X, consider the corresponding sequence of approximate best replies
A(u, λk). A(u, λk) is non-empty and semiconvex by assumptions (2) and (5). For
eachy ∈ X, by Lemma 2 and assumption (4), the functionu −→ fi(yi, u−i ) −
max
zi∈ϕi(u)

fi(zi, u−i ) is l.s.c., therefore

A−1(y, λk) :=
n⋂
i=1

{u ∈ X : fi(yi, u−i ) > max
zi∈ϕi (u)

fi(zi, u−i )− λk}
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is open inX. Then all the conditions of Theorem 2 are met for the setX and the
mapA defined on it. Hence, there exists anxk ∈ X such thatxk ∈ A(xk, λk), i.e.

fi(x
k
i , x

k
−i ) > max

zi∈ϕi (xk)
fi(zi, x

k
−i )− λk

holds for eachk ∈ N.
SinceX is compact, there exists a subsequence{w`} of {xk} andx∗ ∈ X such

thatw` −→ x∗. Letw` := xk(`) wherek(`) −→∞ andλk(`) −→ 0. By Lemma 2
and assumption (3), for eachi ∈ N ,

fi(x
∗
i , x
∗
−i ) > lim sup

`−→∞
fi(x

k(`)
i , x

k(`)
−i ) >

lim
`−→∞

max
zi∈ϕi (xk(`))

fi(zi, x
k(`)
−i ) = max

zi∈ϕi(x∗)
fi(zi, x

∗
−i ) .

Therefore,x∗ is a Nash equilibrium point of game0. 2

Again, we note that ifP1,1-space in Theorem 12 is replaced byP2,1-space,
then for eachi ∈ N , assumingϕi to have semiconvex values,fi(·, u−i ) to be
quasiconcave onXi for any fixedu−i ∈ X−i, the approximate best replyA(u, λk)
will be semiconvex for anyu ∈ X andk ∈ N. Thus, assumption (5) can be stated
in terms of quasiconcavity of the payoff functions. It is easy to see that Theorem
12 also reduces to Theorem 2.1 in Tan et al. (1995) if we drop the neighborhood
functions and restrict ourselves to topological vector spaces.

If continuity and quasiconcavity assumptions are given for the sum of the payoff
functions, then we get another existence theorem.

THEOREM 13. Let0 := {X1, . . . , Xn;ϕ1, . . . , ϕn;f1, . . . , fn} be a game with
the following properties:

(1) for eachi ∈ N ,Xi is a non-empty, compactP2,1-space;
(2) for each i ∈ N and anyx ∈ X, xi ∈ ϕi(x), ϕi(x) is semiconvex and

ϕ−1
i (y) := {x ∈ X : y ∈ ϕi(x)} is open for ally ∈ Xi ;

(3)
∑n

i=1 fi is u.s.c. onX;
(4) for eachi ∈ N and fixedui ∈ Xi , the functionfi(ui, ·) is l.s.c. onX−i ;
(5) for any fixedu ∈ X,

the function
∑n

i=1fi(·, u−i ) is quasiconcave on
∏n
i=1 ϕi(u).

Then0 has a Nash equilibrium point.
Proof.Define the functiong : X2 −→ R by

g(x, y) :=
n∑
i=1

[fi(yi, x−i )− fi(xi, x−i )]

andV : X −→ 2X by

V (x) :=
n∏
i=1

ϕi(x) .
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ThenX, g andV satisfy all the conditions of Theorem 5:
(i) X is aP2,1-space by assumption (1),
(ii) for any x ∈ X, V (x) is semiconvex,x ∈ V (x) and

V −1(y) := {x ∈ X : y ∈ V (x)}
is open for ally ∈ Y by assumption (2),

(iii) for eachy ∈ X, g(·, y) is l.s.c. by assumptions (3) and (4),
(iv) for any fixedx ∈ X, g(x, ·) is quasiconcave onV (x) by assumption (5),
(v) g(x, x) = 0 for any x∈ X by the definition ofg.
Thus, by Theorem 5, there is anx∗ ∈ X such thatg(x∗, y) 6 0 for all y ∈

V (x∗). For eachi ∈ N and ui ∈ ϕi(x
∗) set y := (ui, x

∗
−i ) ∈ V (x∗). Then

g(x∗, y) = fi(ui, x
∗
−i ) − fi(x∗i , x∗−i ) 6 0 holds for allui ∈ ϕi(x∗) and i ∈ N

which means thatx∗ is a Nash equilibrium point of0. 2

It is easy to state Theorem 13 in a neighborhood function-free form in a topological
vector space setting. Then we will get Theorem 2.2 in Tan et al. (1995). The above
equilibrium theorems can also be rewritten in terms ofw-functions without any
reference toP -spaces in analogy to how it was done in Theorem 9.

EXAMPLE 5. For an illustration, take a very simple single-product duopoly game
with price differentiation. Demand for the product is unusual, it is high for low and
high prices (e.g. this can be the case for vintage wines and other prestige products).
The decision variable for both firms is price change which varies from−1 (lowest
possible) to 1 (highest possible) continuously.

For simplicity, we will assume symmetry, therefore it is enough to consider only
one firm (say firm 1). If its price change is denoted byx, while that of firm 2 byy,
then the changeP1 in firm 1’s profit is assumed to be given as

P1(x, y) :=


yx2 if −16 y < 0 ,

0 if y = 0 ,

yx2 + y if 0 < y 6 1 .

Elementary calculation shows that the best-reply correspondencey −→ B1(y)

for firm 1 is

B1(y) :=



− 1

2y
if −16 y < −1

2

1 if −1

2
6 y < 0

[−1,1] if y = 0

{1,1} if 0 < y 6 1 .

Compactness of the strategy sets is obvious. The graph ofB1 is closed as shown
in Figure 1, thereforeB1 is u.s.c.
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Figure 1.

Thew-function (the same as the one in Example 1 and 2)w : 42×[−1,1]2 −→
[−1,1]

w(x1, x2;λ1, λ2) :=
√
λ1x

2
1 + λ2x

2
2

generates aG2,1-space, withB1(y) semiconvex for eachy ∈ [−1,1] as was shown
in Example 2. Thus, Theorem 11 applies and there exists a Nash equilibrium point.

Note that if upper semicontinuity of the best-reply correspondence can be easily
established, then there is no need for checking continuity properties of the payoff
functions.
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